Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166239, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389475

RESUMO

BACKGROUND: Autotaxin is an enzyme that converts lysophospholipid into lysophosphatidic acid (LPA), a highly potent signaling molecule through a range of LPA receptors. It is therefore important to investigate which factors play a role in regulating ATX expression. Since we have reported that ATX levels increase dramatically in patients with various forms of cholestasis, we embarked on a study to reveal factors that influence the enzyme activity ATX as well as its expression level in vitro and in vivo. METHODS: Bile from cholestatic patients was fractionated by HPLC and analyzed for modulation of ATX activity. ATX expression was measured in fibroblasts upon stimulation or inhibition of LPA signaling. RESULTS: Surprisingly, ATX activity was stimulated by most forms of its product LPA, but it was inhibited by bile salts and bile salt-like molecules, particularly by 3-OH sulfated bile salts and sulfated progesterone metabolites that are known to accumulate during chronic cholestasis and cholestasis of pregnancy, respectively. Activation of fibroblasts by LPA decreased ATX expression by 72%. Conversely, inhibition of LPA signaling increased ATX expression 3-fold, indicating strong feedback regulation by LPA signaling. In fibroblasts, we could verify that inhibition of ATX activity by bile salts induces its expression. Furthermore, induction of cholestasis in mice causes increased plasma ATX activity. CONCLUSIONS: Multiple biliary compounds that accumulate in the systemic circulation during cholestasis inhibit ATX activity and thereby increase ATX expression through feedback regulation. This mechanism may contribute to increased serum ATX activity in patients with cholestasis.


Assuntos
Ácidos e Sais Biliares/metabolismo , Cirrose Hepática Biliar/complicações , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Prurido/metabolismo , Drenagem , Ensaios Enzimáticos , Retroalimentação Fisiológica , Humanos , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/terapia , Prurido/sangue , Prurido/etiologia , Receptores de Ácidos Lisofosfatídicos/metabolismo
2.
Front Med (Lausanne) ; 8: 639674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791327

RESUMO

Pruritus is a debilitating symptom of various cholestatic disorders, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) and inherited progressive familial intrahepatic cholestasis (PFIC). The molecular mechanisms leading to cholestasis-associated pruritus are still unresolved and the involved pruritogens are indecisive. As a consequence of pruritus, patients suffer from sleep deprivation, loss of daytime concentration, auto-mutilation and sometimes even suicidal ideations. Current guideline-approved therapy of cholestasis-associated pruritus includes stepwise administration of several medications, which may alleviate complaints in some, but not all affected patients. Therefore, also experimental therapeutic approaches are required to improve patients' quality of life. This article reviews the current state of research on pruritogens and their receptors, and shortly discusses the most recent experimental therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...