Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 98(4): 1665-70, 2001 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-11172008

RESUMO

Gnathostome vertebrates have multiple members of the Dlx family of transcription factors that are expressed during the development of several tissues considered to be vertebrate synapomorphies, including the forebrain, cranial neural crest, placodes, and pharyngeal arches. The Dlx gene family thus presents an ideal system in which to examine the relationship between gene duplication and morphological innovation during vertebrate evolution. Toward this end, we have cloned Dlx genes from the lamprey Petromyzon marinus, an agnathan vertebrate that occupies a critical phylogenetic position between cephalochordates and gnathostomes. We have identified four Dlx genes in P. marinus, whose orthology with gnathostome Dlx genes provides a model for how this gene family evolved in the vertebrate lineage. Differential expression of these lamprey Dlx genes in the forebrain, cranial neural crest, pharyngeal arches, and sensory placodes of lamprey embryos provides insight into the developmental evolution of these structures as well as a model of regulatory evolution after Dlx gene duplication events.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio/genética , Lampreias/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar , Embrião não Mamífero , Expressão Gênica , Lampreias/classificação , Lampreias/embriologia , Camundongos , Dados de Sequência Molecular , Filogenia , Vertebrados/classificação , Vertebrados/genética
2.
Dev Biol ; 220(1): 16-26, 2000 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-10720427

RESUMO

The vertebrate embryonic hindbrain is segmented into rhombomeres. Gene expression studies suggest that amphioxus, the closest invertebrate relative of vertebrates, has a hindbrain homolog. However, this region is not overtly segmented in amphioxus, raising the question of how hindbrain segmentation arose in chordate evolution. Vertebrate hindbrain segmentation includes the patterning of cranial motor neurons, which can be identified by their expression of the LIM-homeodomain transcription factor islet1. To learn if the amphioxus hindbrain homolog is cryptically segmented, we cloned an amphioxus gene closely related to islet1, which we named simply islet. We report that amphioxus islet expression includes a domain of segmentally arranged cells in the ventral hindbrain homolog. We hypothesize that these cells are developing motor neurons and reveal a form of hindbrain segmentation in amphioxus. Hence, vertebrate rhombomeres may derive from a cryptically segmented brain present in the amphioxus/vertebrate ancestor. Other islet expression domains provide evidence for amphioxus homologs of the pineal gland, adenohypophysis, and endocrine pancreas. Surprisingly, homologs of vertebrate islet1-expressing spinal motor neurons and Rohon-Beard sensory neurons appear to be absent.


Assuntos
Cordados não Vertebrados/embriologia , Cordados não Vertebrados/genética , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Rombencéfalo/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Padronização Corporal/genética , Cordados não Vertebrados/metabolismo , DNA Complementar/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Proteínas com Homeodomínio LIM , Masculino , Dados de Sequência Molecular , Neurônios Motores/citologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Distribuição Tecidual , Fatores de Transcrição
3.
Evol Dev ; 2(6): 303-10, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11256375

RESUMO

The organizer is a central feature of vertebrate embryogenesis and is functionally subdivided into the head organizer that gives rise primarily to the prechordal plate and induces forebrain structures, and the trunk/tail organizer that gives rise primarily to the notochord and induces more posterior structures. Goosecoid(gsc) encodes a homeodomain-containing transcription factor that is expressed in the vertebrate head organizer and prechordal plate, and can induce a secondary axis when expressed ectopically. To investigate the evolution of the vertebrate head organizer and prechordal plate, we have cloned and characterized a gsc homolog from the cephalochordate amphioxus. Amphioxus, it is important to note, lacks a prechordal plate in that the notochord extends to the extreme anterior end of the animal, and lacks elaborate differentiation of its forebrain. Gsc expression in amphioxus is initially localized during gastrulation to the mesendodermal layer of the dorsal lip of the blastopore. However, gsc expression in amphioxus is not maintained in anterior axial mesoderm, as is the case with the vertebrate prechordal plate. Rather, gsc is expressed in the dorsal axial mesoderm of the blastopore lip throughout gastrulation, appearing transiently in the presumptive notochord that underlies all regions of the amphioxus brain. The similarities in gsc expression in amphioxus and vertebrates suggest that a primitive version of the head organizer evolved prior to the origin of the vertebrates. The differences in gsc expression can be interpreted either as the loss of the prechordal plate domain in the cephalochordate lineage, or the gain of a distinct gsc-expressing prechordal plate that plays a role in forebrain induction in the vertebrate lineage.


Assuntos
Evolução Biológica , Cordados não Vertebrados/embriologia , Cordados não Vertebrados/genética , Cabeça/embriologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras , Fatores de Transcrição , Sequência de Aminoácidos , Animais , Proteína Goosecoid , Proteínas de Homeodomínio/química , Humanos , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
5.
Dev Biol ; 207(1): 26-37, 1999 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-10049562

RESUMO

Agnathan or jawless vertebrates, such as lampreys, occupy a critical phylogenetic position between the gnathostome or jawed vertebrates and the cephalochordates, represented by amphioxus. In order to gain insight into the evolution of the vertebrate head, we have cloned and characterized a homolog of the head-specific gene Otx from the lamprey Petromyzon marinus. This lamprey Otx gene is a clear phylogenetic outgroup to both the gnathostome Otx1 and Otx2 genes. Like its gnathostome counterparts, lamprey Otx is expressed throughout the presumptive forebrain and midbrain. Together, these results indicate that the divergence of Otx1 and Otx2 took place after the gnathostome/agnathan divergence and does not correlate with the origin of the vertebrate brain. Intriguingly, Otx is also expressed in the cephalic neural crest cells as well as mesenchymal and endodermal components of the first pharyngeal arch in lampreys, providing molecular evidence of homology with the gnathostome mandibular arch and insights into the evolution of the gnathostome jaw.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Cabeça/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Lampreias/embriologia , Fatores de Transcrição , Animais , Clonagem Molecular , Desenvolvimento Embrionário , Evolução Molecular , Cabeça/embriologia , Proteínas de Homeodomínio/química , Hibridização In Situ , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Otx , Filogenia , RNA Antissenso/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Transativadores/genética , Vertebrados/embriologia , Vertebrados/genética
6.
Dev Genes Evol ; 208(10): 569-77, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9811975

RESUMO

Homologs of the Drosophila snail gene have been characterized in several vertebrates. In addition to being expressed in mesoderm during gastrulation, vertebrate snail genes are also expressed in presumptive neural crest and/or its derivatives. Given that neural crest is unique to vertebrates and is considered to be of fundamental importance in their evolution, we have cloned and characterized the expression of a snail gene from amphioxus, a cephalochordate widely accepted as the sister group of the vertebrates. We show that, at the amino acid sequence level, the amphioxus snail gene is a clear phylogenetic outgroup to all the characterized vertebrate snail genes. During embryogenesis snail expression initially becomes restricted to the paraxial or presomitic mesoderm of amphioxus. Later, snail is expressed at high levels in the lateral neural plate, where it persists during neurulation. Our results indicate that an ancestral function of snail genes in the lineage leading to vertebrates is to define the paraxial mesoderm. Furthermore, our results indicate that a cell population homologous to the vertebrate neural crest may be present in amphioxus, thus providing an important link in the evolution of this key vertebrate tissue.


Assuntos
Cordados não Vertebrados/embriologia , Cordados não Vertebrados/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Mesoderma/metabolismo , Dados de Sequência Molecular , Crista Neural/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição da Família Snail
7.
Nature ; 375(6526): 58-61, 1995 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-7723843

RESUMO

The evolution of wings catalysed the radiation of insects which make up some 75 per cent of known animals. Fossil evidence suggests that wings evolved from a segment of the leg and that early pterygotes bore wings on all thoracic and abdominal segments. The pterygote body plan subsequently diverged producing orders bearing three, two or just one pair of thoracic wings. We have investigated the role of homeotic genes in pterygote evolution by examining their function in Drosophila wing development and their expression in a primitive apterygote. Wing formation is not promoted by any homeotic gene, but is repressed in different segments by different homeotic genes. We suggest here that wings first arose without any homeotic gene involvement in an ancestor with a homeotic 'groundplan' similar to modern winged insects and that wing formation subsequently fell under the negative control of individual homeotic genes at different stages of pterygote evolution.


Assuntos
Evolução Biológica , Proteínas de Drosophila , Drosophila/genética , Genes Homeobox , Proteínas de Homeodomínio , Proteínas Nucleares , Fatores de Transcrição , Asas de Animais , Animais , Proteína do Homeodomínio de Antennapedia , Proteínas de Ligação a DNA/genética , Drosophila/embriologia , Hormônios de Inseto/genética , Insetos , Asas de Animais/embriologia
8.
Development ; 120(10): 2945-55, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7607084

RESUMO

We present a genetic and molecular analysis of two hairy (h) pair-rule stripes in order to determine how gradients of gap proteins position adjacent stripes of gene expression in the posterior of Drosophila embryos. We have delimited regulatory sequences critical for the expression of h stripes 5 and 6 to 302 bp and 526 bp fragments, respectively, and assayed the expression of stripe-specific reporter constructs in several gap mutant backgrounds. We demonstrate that posterior stripe boundaries are established by gap protein repressors unique to each stripe: h stripe 5 is repressed by the giant (gt) protein on its posterior border and h stripe 6 is repressed by the hunchback (hb) protein on its posterior border. Interestingly, Krüppel (Kr) limits the anterior expression limits of both stripes and is the only gap gene to do so, indicating that stripes 5 and 6 may be coordinately positioned by the Kr repressor. In contrast to these very similar cases of spatial repression, stripes 5 and 6 appear to be activated by different mechanisms. Stripe 6 is critically dependent upon knirps (kni) for activation, while stripe 5 likely requires a combination of activating proteins (gap and non-gap). To begin a mechanistic understanding of stripe formation, we locate binding sites for the Kr protein in both stripe enhancers. The stripe 6 enhancer contains higher affinity Kr-binding sites than the stripe 5 enhancer, which may allow for the two stripes to be repressed at different Kr protein concentration thresholds. We also demonstrate that the kni activator binds to the stripe 6 enhancer and present evidence for a competitive mechanism of Kr repression of stripe 6.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas de Insetos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/fisiologia , Drosophila/genética , Imuno-Histoquímica , Hibridização In Situ , Hormônios de Inseto/fisiologia , Fatores de Transcrição Kruppel-Like , Dados de Sequência Molecular , Morfogênese/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia
9.
Development ; 117(2): 585-96, 1993 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8330529

RESUMO

The hairy (h) gene is one of two pair-rule loci whose striped expression is directly regulated by combinations of gap proteins acting through discrete upstream regulatory fragments, which span several kilobases. We have undertaken a comparative study of the molecular biology of h pair-rule expression in order to identify conserved elements in this complex regulatory system, which should provide important clues concerning the mechanism of stripe formation. A molecular comparison of the h locus in Drosophila virilis and Drosophila melanogaster reveals a conserved overall arrangement of the upstream regulatory elements that control individual pair-rule stripes. We demonstrate that upstream fragments from D. virilis will direct the proper expression of stripes in D. melanogaster, indicating that these are true functional homologs of the stripe-producing D. melanogaster regulatory elements, and that the network of trans-acting proteins that act upon these regulatory elements is highly conserved. We also demonstrate that the spatial relationships between specific h stripes and selected gap proteins are highly conserved. We find several tracts of extensive nucleotide sequence conservation within homologous stripe-specific regulatory fragments, which have facilitated the identification of functional subelements within the D. melanogaster regulatory fragment for h stripe 5. Some of the conserved nucleotide tracts within this regulatory fragment contain consensus binding sites for potential trans-regulatory (gap and other) proteins, while many appear devoid of known binding sites. This comparative approach, coupled with the analysis of reporter gene expression in gap mutant embryos suggests that the Kr and gt proteins establish the anterior and posterior borders of h stripe 5, respectively, through spatial repression. Other, as yet unidentified, proteins are certain to play a role in stripe activation, presumably acting through other conserved sequence tracts.


Assuntos
Sequência Conservada , Proteínas de Drosophila , Drosophila/genética , Genes Reguladores/genética , Hormônios de Inseto/genética , Proteínas de Insetos , Proteínas Repressoras , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Drosophila/embriologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Expressão Gênica/genética , Genes de Insetos , Hibridização In Situ , Dados de Sequência Molecular , Morfogênese/genética
10.
Biotechniques ; 14(1): 42-8, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8424875

RESUMO

We present a simple means for triple-labeling biological specimens by immunofluorescence using a laser scanning confocal microscope for imaging with a krypton/argon laser as a light source. Three separate images of fluorescein-, lissamine rhodamine- and cyanine-5-labeled antibodies are collected and subsequently merged to form the triple-labeled image, which is displayed at full-image resolution (24 bit) on a second image processing system. The technique is illustrated using immunofluorescence localization of three segmentation proteins in Drosophila embryos.


Assuntos
Imunofluorescência , Microscopia de Fluorescência/métodos , Animais , Biotecnologia , Cor , Gráficos por Computador , Drosophila melanogaster , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/metabolismo , Processamento de Imagem Assistida por Computador , Lasers , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...