Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927066

RESUMO

The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ciclo Celular/genética , Técnicas de Cultura Celular por Lotes , Regulação Fúngica da Expressão Gênica , DNA/metabolismo , Glucose/metabolismo
2.
Trends Food Sci Technol ; 106: 1-11, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32982062

RESUMO

BACKGROUND: A novel coronavirus, the SARS-CoV2, was revealed to be the cause of COVID19, the pandemic disease that already provoked more than 555.324 deaths in the world (July 10, 2020). No vaccine treatment has been defined against SARS-CoV2 or other human coronaviruses (HCoVs), including those causing epidemic infections, neither appropriate strategies for prevention and care are yet officially suggested. SCOPE AND APPROACH: We reviewed scientific literature on natural compounds that were defined as potentially effective against human coronaviruses. Our desk research identified non-chemically modified natural compounds that were shown (in vitro) and/or predicted (in silico) to act against one or more phases of human coronaviruses cell cycle.We selected all available information, merged and annotated the data to define a comprehensive list of natural compounds, describing their chemical classification, the source, the action, the specific target in the viral infection. Our aim was to collect possible compounds for prevention and care against human coronaviruses. KEY FINDINGS AND CONCLUSIONS: The definition of appropriate interventions against viral diseases need a comprehensive view on the infection dynamics and on necessary treatments. Viral targeting compounds to be exploited in food sciences could be of relevant interest to this aim.We collected 174 natural compounds showing effects against human infecting coronaviruses, providing a curated annotation on actions and targets.The data are available in anti-HCoV, a web accessible resource to be exploited for testing and in vivo trials. The website is here launched to favour a community based cooperative effort to call for contribution and expand the collection. To be ready to fight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...