Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 26: 102245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32217469

RESUMO

BACKGROUND: Those with autism spectrum disorder (ASD) and/or attention-deficit-hyperactivity disorder (ADHD) exhibit symptoms of hyperactivity and inattention, causing significant hardships for families and society. A potential mechanism involved in these conditions is atypical executive function (EF). Inconsistent findings highlight that EF features may be shared or distinct across ADHD and ASD. With ADHD and ASD each also being heterogeneous, we hypothesized that there may be nested subgroups across disorders with shared or unique underlying mechanisms. METHODS: Participants (N = 130) included adolescents aged 7-16 with ASD (n = 64) and ADHD (n = 66). Typically developing (TD) participants (n = 28) were included for a comparative secondary sub-group analysis. Parents completed the K-SADS and youth completed an extended battery of executive and other cognitive measures. A two stage hybrid machine learning tool called functional random forest (FRF) was applied as a classification approach and then subsequently to subgroup identification. We input 43 EF variables to the classification step, a supervised random forest procedure in which the features estimated either hyperactive or inattentive ADHD symptoms per model. The FRF then produced proximity matrices and identified optimal subgroups via the infomap algorithm (a type of community detection derived from graph theory). Resting state functional connectivity MRI (rs-fMRI) was used to evaluate the neurobiological validity of the resulting subgroups. RESULTS: Both hyperactive (Mean absolute error (MAE) = 0.72, Null model MAE = 0.8826, (t(58) = -4.9, p < .001) and inattentive (MAE = 0.7, Null model MAE = 0.85, t(58) = -4.4, p < .001) symptoms were predicted better than chance by the EF features selected. Subgroup identification was robust (Hyperactive: Q = 0.2356, p < .001; Inattentive: Q = 0.2350, p < .001). Two subgroups representing severe and mild symptomology were identified for each symptom domain. Neuroimaging data revealed that the subgroups and TD participants significantly differed within and between multiple functional brain networks, but no consistent "severity" patterns of over or under connectivity were observed between subgroups and TD. CONCLUSION: The FRF estimated hyperactive/inattentive symptoms and identified 2 distinct subgroups per model, revealing distinct neurocognitive profiles of Severe and Mild EF performance per model. Differences in functional connectivity between subgroups did not appear to follow a severity pattern based on symptom expression, suggesting a more complex mechanistic interaction that cannot be attributed to symptom presentation alone.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Função Executiva/fisiologia , Aprendizado de Máquina , Adolescente , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
2.
J Neurodev Disord ; 7(1): 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097521

RESUMO

BACKGROUND: A subgroup of young children with autism spectrum disorders (ASD) have significant language impairments (phonology, grammar, vocabulary), although such impairments are not considered to be core symptoms of and are not unique to ASD. Children with specific language impairment (SLI) display similar impairments in language. Given evidence for phenotypic and possibly etiologic overlap between SLI and ASD, it has been suggested that language-impaired children with ASD (ASD + language impairment, ALI) may be characterized as having both ASD and SLI. However, the extent to which the language phenotypes in SLI and ALI can be viewed as similar or different depends in part upon the age of the individuals studied. The purpose of the current study is to examine differences in memory abilities, specifically those that are key "markers" of heritable SLI, among young school-age children with SLI, ALI, and ALN (ASD + language normal). METHODS: In this cross-sectional study, three groups of children between ages 5 and 8 years participated: SLI (n = 18), ALI (n = 22), and ALN (n = 20). A battery of cognitive, language, and ASD assessments was administered as well as a nonword repetition (NWR) test and measures of verbal memory, visual memory, and processing speed. RESULTS: NWR difficulties were more severe in SLI than in ALI, with the largest effect sizes in response to nonwords with the shortest syllable lengths. Among children with ASD, NWR difficulties were not associated with the presence of impairments in multiple ASD domains, as reported previously. Verbal memory difficulties were present in both SLI and ALI groups relative to children with ALN. Performance on measures related to verbal but not visual memory or processing speed were significantly associated with the relative degree of language impairment in children with ASD, supporting the role of verbal memory difficulties in language impairments among early school-age children with ASD. CONCLUSIONS: The primary difference between children with SLI and ALI was in NWR performance, particularly in repeating two- and three-syllable nonwords, suggesting that shared difficulties in early language learning found in previous studies do not necessarily reflect the same underlying mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...