Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687434

RESUMO

The growing demand for watertight concrete structures is conducive to the development of research in this area, but their results are rarely published. In order to partially fill this gap, the authors of the publication present the results of research into the effect of fly ash addition on the watertightness of concrete. Prior to the tests, a recipe for a concrete mix with the addition of a sealing admixture modified with fly ash was developed. The following properties were analyzed: consistency of the concrete mix, air content in the concrete mix, compressive strength of concrete, depth of penetration of water under pressure, and frost resistance of concrete for F150 level. The work meets the expectations of the construction industry with respect to the production of concrete structures resistant not only to the penetration of water into concrete but also resistant to aggressive substances dissolved in water that accelerate the destruction of concrete and corrosion of reinforcement bars. Based on the test results, it was found that the addition of fly ash to the concrete mix enhances the positive impact of the applied sealing admixture, increasing the tightness of the concrete. It reduces the depth of penetration of water under pressure and therefore increases the frost resistance of concrete.

2.
Materials (Basel) ; 14(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572975

RESUMO

Our research focused on the influence of fillers obtained from crushed waste materials on the selected properties of concrete composites. The used waste materials were sourced from the production of ceramic tiles, ceramic pots, and sanitary ceramics. We evaluated concretes modified with the addition of 10% (by mass of cement) of different fillers. The properties, including the air content in the fresh concrete mix, consistency, compressive strength, and freeze-thaw resistance were examined. The evaluation of the freeze-thaw resistance was carried out by testing the concrete with the direct method for 150 cycles of freezing and thawing. The characteristics of the concrete porosity structure were assessed using automated digital image analysis. Concretes modified by coarse and fine fillers were characterized by different improvements in the mechanical properties and resistance to cycles of freezing and thawing. Composites with the addition of coarse fillers did not show any significant changes in comparison to the control concrete. An automated digital image analysis of the pore distribution in concrete proved to be an effective tool for the assessment of the freeze-thaw resistance of the concretes in question.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...