Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(1)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403854

RESUMO

Atomistic simulations of biological processes offer insights at a high level of spatial and temporal resolution, but accelerated sampling is often required for probing timescales of biologically relevant processes. The resulting data need to be statistically reweighted and condensed in a concise yet faithful manner to facilitate interpretation. Here, we provide evidence that a recently proposed approach for the unsupervised determination of optimized reaction coordinate (RC) can be used for both analysis and reweighting of such data. We first show that for a peptide interconverting between helical and collapsed configurations, the optimal RC permits efficient reconstruction of equilibrium properties from enhanced sampling trajectories. Upon RC-reweighting, kinetic rate constants and free energy profiles are in good agreement with values obtained from equilibrium simulations. In a more challenging test, we apply the method to enhanced sampling simulations of the unbinding of an acetylated lysine-containing tripeptide from the bromodomain of ATAD2. The complexity of this system allows us to investigate the strengths and limitations of these RCs. Overall, the findings presented here underline the potential of the unsupervised determination of reaction coordinates and the synergy with orthogonal analysis methods, such as Markov state models and SAPPHIRE analysis.

2.
Elife ; 122023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943194

RESUMO

A central regulatory mechanism of iron homeostasis in humans involves ferroportin (FPN), the sole cellular iron exporter, and the peptide hormone hepcidin, which inhibits Fe2+ transport and induces internalization and degradation of FPN. Dysregulation of the FPN/hepcidin axis leads to diverse pathological conditions, and consequently, pharmacological compounds that inhibit FPN-mediated iron transport are of high clinical interest. Here, we describe the cryo-electron microscopy structures of human FPN in complex with synthetic nanobodies and vamifeport (VIT-2763), the first clinical-stage oral FPN inhibitor. Vamifeport competes with hepcidin for FPN binding and is currently in clinical development for ß-thalassemia and sickle cell disease. The structures display two distinct conformations of FPN, representing outward-facing and occluded states of the transporter. The vamifeport site is located in the center of the protein, where the overlap with hepcidin interactions underlies the competitive relationship between the two molecules. The introduction of point mutations in the binding pocket of vamifeport reduces its affinity to FPN, emphasizing the relevance of the structural data. Together, our study reveals conformational rearrangements of FPN that are of potential relevance for transport, and it provides initial insight into the pharmacological targeting of this unique iron efflux transporter.


Assuntos
Proteínas de Transporte de Cátions , Hepcidinas , Humanos , Hepcidinas/metabolismo , Microscopia Crioeletrônica , Ferro/metabolismo , Proteínas de Transporte de Cátions/metabolismo
3.
Comput Struct Biotechnol J ; 20: 3924-3934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35950183

RESUMO

The microbial transglutaminase (TGase) from Streptomyces mobaraensis (MTGase) is widely used for industrial applications. However, in the last decades, TGases from other bacteria have been described. We focused our attention on TGase, from Kutzneria albida (KalbTGase), recently characterized as more selective than MTGase and proposed for applications in drug delivery. By comparison of the crystallographic structures, the volume of the catalytic site results smaller in KalbTGase. We compared KalbTGase and MTGase structural flexibility by molecular dynamics (MD) simulations at different conditions. KalbTGase is more rigid than MTGase at 300 K, but the catalytic site has a preserved conformation in both structures. Preliminary studies at higher temperatures suggest that KalbTGase acquires enhanced conformational flexibility far from the active site region. The volume of the catalytic active site pocket of KalbTGase at room temperature is smaller than that of MTGase, and decreases at 335 K, remaining stable after further temperature increase. On the contrary, in MTGase the pocket volume continues to decrease as the temperature increases. Overall, the results of our study suggest that at room temperature the enhanced specificity of KalbTGase could be related to a more closed catalytic pocket and lower flexibility than MTGase. Moreover, by preliminary results at higher temperature, KalbTGase structural flexibility suggests an adaptability to different substrates not recognized at room temperature. Lower adaptability of MTGase at higher temperature with a reduction of the catalytic pocket, instead, suggests a reduction of its activity.

4.
J Chem Inf Model ; 60(10): 4881-4893, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32820916

RESUMO

The fragment docking program solvation energy for exhaustive docking (SEED) is evaluated on 15 different protein targets, with a focus on enrichment and the hit rate. It is shown that SEED allows for consistent computational enrichment of fragment libraries, independent of the effective hit rate. Depending on the actual target protein, true positive rates ranging up to 27% are observed at a cutoff value corresponding to the experimental hit rate. The impact of variations in docking protocols and energy filters is discussed in detail. Remaining issues, limitations, and use cases of SEED are also discussed. Our results show that fragment library selection or enhancement for a particular target is likely to benefit from docking with SEED, suggesting that SEED is a useful resource for fragment screening campaigns. A workflow is presented for the use of the program in virtual screening, including filtering and postprocessing to optimize hit rates.


Assuntos
Proteínas , Ligantes , Ligação Proteica , Proteínas/metabolismo
5.
Proteins ; 87(2): 157-167, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520161

RESUMO

The ATPase family, AAA domain-containing protein 2 (ATAD2) has a C-terminal bromodomain, which functions as a chromatin reader domain recognizing acetylated lysine on the histone tails within the nucleosome. ATAD2 is overexpressed in many cancers and its expression is correlated with poor patient outcomes, making it an attractive therapeutic target and potential biomarker. We solved the crystal structure of the ATAD2 bromodomain and found that it contains a disulfide bridge near the base of the acetyllysine binding pocket (Cys1057-Cys1079). Site-directed mutagenesis revealed that removal of a free C-terminal cysteine (C1101) residue greatly improved the solubility of the ATAD2 bromodomain in vitro. Isothermal titration calorimetry experiments in combination with the Ellman's assay demonstrated that formation of an intramolecular disulfide bridge negatively impacts the ligand binding affinities and alters the thermodynamic parameters of the ATAD2 bromodomain interaction with a histone H4K5ac peptide as well as a small molecule bromodomain ligand. Molecular dynamics simulations indicate that the formation of the disulfide bridge in the ATAD2 bromodomain does not alter the structure of the folded state or flexibility of the acetyllysine binding pocket. However, consideration of this unique structural feature should be taken into account when examining ligand-binding affinity, or in the design of new bromodomain inhibitor compounds that interact with this acetyllysine reader module.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Adenosina Trifosfatases/química , Cisteína/química , Proteínas de Ligação a DNA/química , Dissulfetos/química , Domínios Proteicos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dissulfetos/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Ligantes , Lisina/química , Lisina/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Solubilidade , Termodinâmica
6.
J Chem Phys ; 147(19): 195102, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166086

RESUMO

A detailed understanding of the conformational dynamics of biological molecules is difficult to obtain by experimental techniques due to resolution limitations in both time and space. Computer simulations avoid these in theory but are often too short to sample rare events reliably. Here we show that the progress index-guided sampling (PIGS) protocol can be used to enhance the sampling of rare events in selected parts of biomolecules without perturbing the remainder of the system. The method is very easy to use as it only requires as essential input a set of several features representing the parts of interest sufficiently. In this feature space, new states are discovered by spontaneous fluctuations alone and in unsupervised fashion. Because there are no energetic biases acting on phase space variables or projections thereof, the trajectories PIGS generates can be analyzed directly in the framework of transition networks. We demonstrate the possibility and usefulness of such focused explorations of biomolecules with two loops that are part of the binding sites of bromodomains, a family of epigenetic "reader" modules. This real-life application uncovers states that are structurally and kinetically far away from the initial crystallographic structures and are also metastable. Representative conformations are intended to be used in future high-throughput virtual screening campaigns.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Sítios de Ligação , Ensaios de Triagem em Larga Escala , Cinética
7.
J Biol Chem ; 292(40): 16734-16745, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28798233

RESUMO

Bromodomains are protein modules adopting conserved helix bundle folds. Some bromodomain-containing proteins, such as ATPase family AAA domain-containing protein 2 (ATAD2), isoform A, have attracted much interest because they are overexpressed in many types of cancer. Bromodomains bind to acetylated lysine residues on histone tails and thereby facilitate the reading of the histone code. Epigenetic regulators in general have been implicated as indicators, mediators, or causes of a large number of diseases and disorders. To interfere with or modulate these processes, it is therefore of fundamental interest to understand the molecular mechanisms by which epigenetic regulation occurs. Here, we present results from molecular dynamics simulations of a doubly acetylated histone H4 peptide bound to the bromodomain of ATAD2 (hereafter referred to as ATAD2A). These simulations revealed how the flexibility of ATAD2A's major loop, the so-called ZA loop, creates an adaptable interface that preserves the disorder of both peptide and loop in the bound state. We further demonstrate that the binding involves an almost identical average pattern of interactions irrespective of which acetyl mark is inserted into the pocket. In conjunction with a likely mechanism of electrostatically driven recruitment, our simulation results highlight how the bromodomain is built toward promiscuous binding with low specificity. In conclusion, the simulations indicate that disorder and electrostatic steering function jointly to recruit ATAD2A to the histone core and that these fuzzy interactions may promote cooperativity between nearby epigenetic marks.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ligação a DNA/química , Histonas/química , Simulação de Dinâmica Molecular , ATPases Associadas a Diversas Atividades Celulares , Acetilação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Lógica Fuzzy , Histonas/genética , Histonas/metabolismo , Humanos , Estrutura Secundária de Proteína , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...