Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106086

RESUMO

Numerous studies of hippocampal synaptic function in learning and memory have established the functional significance of the scaffolding A-kinase anchoring protein 150 (AKAP150) in kinase and phosphatase regulation of synaptic receptor and ion channel trafficking/function and hence synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a critical role in brain's processing of rewarding/aversive experiences. Here we focused on an unexplored role of AKAP150 in the lateral habenula (LHb), a diencephalic brain region that integrates and relays negative reward signals from forebrain striatal and limbic structures to midbrain monoaminergic centers. LHb aberrant activity (specifically hyperactivity) is also linked to depression. Using whole cell patch clamp recordings in LHb of male wildtype (WT) and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), we found that the genetic disruption of PKA anchoring to AKAP150 significantly reduced AMPA receptor (AMPAR)-mediated glutamatergic transmission and prevented the induction of presynaptic endocannabinoid (eCB)-mediated long-term depression (LTD) in LHb neurons. Moreover, ΔPKA mutation potentiated GABAA receptor (GABAAR)-mediated inhibitory transmission postsynaptically while increasing LHb intrinsic neuronal excitability through suppression of medium afterhyperpolarizations (mAHPs). Given that LHb is a highly stress-responsive brain region, we further tested the effects of corticotropin releasing factor (CRF) stress neuromodulator on synaptic transmission and intrinsic excitability of LHb neurons in WT and ΔPKA mice. As in our earlier study in rat LHb, CRF significantly suppressed GABAergic transmission onto LHb neurons and increased intrinsic excitability by diminishing small-conductance potassium (SK) channel-mediated mAHPs. ΔPKA mutation-induced suppression of mAHPs also blunted the synaptic and neuroexcitatory actions of CRF in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPAR and GABAAR synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPAR and potassium channel trafficking and eCB signaling within the LHb.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27997083

RESUMO

BACKGROUND: Sacral nerve stimulation (SNS) is a surgical treatment of fecal and urinary incontinence that consists of inserting a stimulating electrode into one of the s3 or s4 sacral holes. In addition to the benefit of SNS in the treatment of incontinence, recent studies showed that SNS is effective in the treatment of irritable bowel syndrome as well as bladder pain syndrome. The aim of this study was to evaluate the effect of SNS on visceral mechanosensitivity in a cross-organ sensitization rat model. METHODS: Hypersensitive model was obtained by instillation of acetic acid into the bladder of rats during 5 minutes, 30 minutes before the start of the experiments. Visceral sensitivity was assessed by monitoring the change in mean arterial pressure in response to graded isobaric colorectal distension series. To decipher the mechanisms underlying SNS effect, rats were administered intravenously either a nonselective opioid receptor antagonist (naloxone) or a nitric oxide synthesis antagonist (L-NAME). Neuronal activation in the dorsal horn of the sacral spinal cord was measured by counting c-fos immunoreactive cells in response to colorectal distension and NMS. KEY RESULTS: Intravesical acetic acid instillation increased mean arterial pressure variation in response to colorectal distension when compared to saline group. SNS reduced the variation in arterial pressure. Colorectal distension induced a rise in c-fos immunoreactive cells in the dorsal horn of the spinal cord. This effect was reduced by SNS. CONCLUSIONS & INFERENCES: SNS reduces visceral mechanosensitivity in a cross-organ sensitization model.


Assuntos
Colo/fisiologia , Mecanotransdução Celular/fisiologia , Reto/fisiologia , Sacro/fisiologia , Nervos Espinhais/fisiologia , Dor Visceral/fisiopatologia , Animais , Colo/efeitos dos fármacos , Colo/inervação , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Ratos , Ratos Sprague-Dawley , Reto/efeitos dos fármacos , Reto/inervação , Sacro/efeitos dos fármacos , Sacro/inervação , Dor Visceral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...