Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 37(5): 1114-29, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24131360

RESUMO

Secondary metabolism plant glycosyltransferases (UGTs) ensure conjugation of sugar moieties to secondary metabolites (SMs) and glycosylation contributes to the great diversity, reactivity and regulation of SMs. UGT73B3 and UGT73B5, two UGTs of Arabidopsis thaliana (Arabidopsis), are involved in the hypersensitive response (HR) to the avirulent bacteria Pseudomonas syringae pv. tomato (Pst-AvrRpm1), but their function in planta is unknown. Here, we report that ugt73b3, ugt73b5 and ugt73b3 ugt73b5 T-DNA insertion mutants exhibited an accumulation of reactive oxygen species (ROS), an enhanced cell death during the HR to Pst-AvrRpm1, whereas glutathione levels increased in the single mutants. In silico analyses indicate that UGT73B3 and UGT73B5 belong to the early salicylic acid (SA)-induced genes whose pathogen-induced expression is co-regulated with genes related to cellular redox homeostasis and general detoxification. Analyses of metabolic alterations in ugt mutants reveal modification of SA and scopoletin contents which correlate with redox perturbation, and indicate quantitative modifications in the pattern of tryptophan-derived SM accumulation after Pst-AvrRpm1 inoculation. Our data suggest that UGT73B3 and UGT73B5 participate in regulation of redox status and general detoxification of ROS-reactive SMs during the HR to Pst-AvrRpm1, and that decreased resistance to Pst-AvrRpm1 in ugt mutants is tightly linked to redox perturbation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Resistência à Doença/imunologia , Glucosiltransferases/metabolismo , Pseudomonas syringae/fisiologia , Metabolismo Secundário , Arabidopsis/citologia , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Sequência de Bases , Morte Celular , Simulação por Computador , Resistência à Doença/efeitos dos fármacos , Eletrólitos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucosiltransferases/genética , Glutationa/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Indóis/metabolismo , Dados de Sequência Molecular , Mutação/genética , Motivos de Nucleotídeos/genética , Oxirredução/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas/genética , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia , Escopoletina/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Metabolismo Secundário/genética , Tiazóis/metabolismo
2.
Plant Physiol ; 153(4): 1692-705, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543092

RESUMO

While it is well established that reactive oxygen species can induce cell death, intracellularly generated oxidative stress does not induce lesions in the Arabidopsis (Arabidopsis thaliana) photorespiratory mutant cat2 when plants are grown in short days (SD). One interpretation of this observation is that a function necessary to couple peroxisomal hydrogen peroxide (H(2)O(2))-triggered oxidative stress to cell death is only operative in long days (LD). Like lesion formation, pathogenesis-related genes and camalexin were only induced in cat2 in LD, despite less severe intracellular redox perturbation compared with SD. Lesion formation triggered by peroxisomal H(2)O(2) was modified by introducing secondary mutations into the cat2 background and was completely absent in cat2 sid2 double mutants, in which ISOCHORISMATE SYNTHASE1 (ICS1) activity is defective. In addition to H(2)O(2)-induced salicylic acid (SA) accumulation, the sid2 mutation in ICS1 abolished a range of LD-dependent pathogen responses in cat2, while supplementation of cat2 with SA in SD activated these responses. Nontargeted transcript and metabolite profiling identified clusters of genes and small molecules associated with the daylength-dependent ICS1-mediated relay of H(2)O(2) signaling. The effect of oxidative stress in cat2 on resistance to biotic challenge was dependent on both growth daylength and ICS1. We conclude that (1) lesions induced by intracellular oxidative stress originating in the peroxisomes can be genetically reverted; (2) the isochorismate pathway of SA synthesis couples intracellular oxidative stress to cell death and associated disease resistance responses; and (3) camalexin accumulation was strictly dependent on the simultaneous presence of both H(2)O(2) and SA signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Peróxido de Hidrogênio/metabolismo , Transferases Intramoleculares/metabolismo , Peroxissomos/metabolismo , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Indóis/metabolismo , Transferases Intramoleculares/genética , Metaboloma , Mutação , Estresse Oxidativo , Fotoperíodo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Tiazóis/metabolismo
3.
J Exp Bot ; 61(12): 3355-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20530195

RESUMO

Secondary metabolites (SMs) play key roles in pathogen responses, although knowledge of their precise functions is limited by insufficient characterization of their spatial response. The present study addressed this issue in Arabidopsis leaves by non-targeted and targeted metabolite profiling of Pseudomonas syringae pv. tomato (Pst-AvrRpm1) infected and adjacent uninfected leaf tissues. While overlap was observed between infected and uninfected areas, the non-targeted metabolite profiles of these regions differed quantitatively and clustering analysis underscores a differential distribution of SMs within distinct metabolic pathways. Targeted metabolite profiling revealed that infected tissues accumulate more salicylic acid and the characteristic phytoalexin of Arabidopsis, camalexin, than uninfected adjacent areas. On the contrary, the antioxidant coumarin derivative, scopoletin, was induced in infected tissues while its glucoside scopolin predominated in adjacent tissues. To elucidate the still unclear relationship between the accumulation of SMs and reactive oxygen species (ROS) accumulation and signalling, a catalase-deficient line (cat2) in which ROS signalling is up-regulated, was used. Metabolic analysis of cat2 suggests that some SMs have important interactions with ROS in redox homeostasis during the hypersensitive response to Pst-AvrRpm1. Overall, the study demonstrates that ROS availability influences both the amount and the pattern of infection-induced SM accumulation.


Assuntos
Arabidopsis/metabolismo , Doenças das Plantas , Folhas de Planta/metabolismo , Pseudomonas syringae/patogenicidade , Explosão Respiratória , Arabidopsis/genética , Arabidopsis/microbiologia , Cumarínicos/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Indóis/metabolismo , Metaboloma , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Tiazóis/metabolismo
4.
Plant Physiol ; 139(4): 1890-901, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306146

RESUMO

The genome sequencing of Arabidopsis (Arabidopsis thaliana) has revealed that secondary metabolism plant glycosyltransferases (UGTs) are encoded by an unexpectedly large multigenic family of 120 members. Very little is known about their actual function in planta, in particular during plant pathogen interactions. Among them, members of the group D are of particular interest since they are related to UGTs involved in stress-inducible responses in other plant species. We provide here a detailed analysis of the expression profiles of this group of Arabidopsis UGTs following infection with Pseudomonas syringae pv tomato or after treatment with salicylic acid, methyljasmonate, and hydrogen peroxide. Members of the group D displayed distinct induction profiles, indicating potential roles in stress or defense responses notably for UGT73B3 and UGT73B5. Analysis of UGT expression in Arabidopsis defense-signaling mutants further revealed that their induction is methyljasmonate independent, but partially salicylic acid dependent. T-DNA tagged mutants (ugt73b3 and ugt73b5) exhibited decreased resistance to P. syringae pv tomato-AvrRpm1, indicating that expression of the corresponding UGT genes is necessary during the hypersensitive response. These results emphasize the importance of plant secondary metabolite UGTs in plant-pathogen interactions and provide foundation for future understanding of the exact role of UGTs during the hypersensitive response.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/microbiologia , Glucosiltransferases/genética , Glicosiltransferases/genética , Pseudomonas syringae/patogenicidade , Acetatos/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Ciclopentanos/farmacologia , DNA de Plantas/genética , Expressão Gênica , Genes de Plantas , Glucosiltransferases/classificação , Glucosiltransferases/metabolismo , Glicosiltransferases/classificação , Glicosiltransferases/metabolismo , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas , Filogenia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais , Virulência
5.
Trends Plant Sci ; 10(11): 542-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16214386

RESUMO

Glycosylation is a widespread modification of plant secondary metabolites. It is involved in various functions, including the regulation of hormone homeostasis, the detoxification of xenobiotics and the biosynthesis and storage of secondary compounds. In plants, these reactions are controlled by a specific subclass of the ubiquitous glycosyltransferase family. Although these enzymes have been studied intensively for many years, to date only a handful have been characterized in planta. Plant genome projects have uncovered unsuspected complexity within this family that is hindering the characterization of single genes. However, genome information also paves the way for the development of functional genomic approaches. Here, we highlight recent progress and the outcomes of novel strategies developed to uncover the physiological roles of these glycosyltransferases.


Assuntos
Glicosiltransferases/metabolismo , Plantas/enzimologia , Genoma de Planta , Glicosilação , Estrutura Molecular , Plantas/genética
6.
Plant Mol Biol ; 58(2): 229-45, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16027976

RESUMO

The combined knowledge of the Arabidopsis genome and transcriptome now allows to get an integrated view of the dynamics and evolution of metabolic pathways in plants. We used publicly available sets of microarray data obtained in a wide range of different stress and developmental conditions to investigate the co-expression of genes encoding enzymes of secondary metabolism pathways, in particular indoles, phenylpropanoids, and flavonoids. We performed hierarchical clustering of gene expression profiles and found that major enzymes of each pathway display a clear and robust co-expression throughout all the conditions studied. Moreover, detailed analysis evidenced that some genes display co-regulation in particular physiological conditions only, certainly reflecting their modular recruitment into stress- or developmentally regulated biosynthetic pathways. The combination of these microarray data with sequence analysis allows to draw very precise hypotheses on the function of otherwise uncharacterized genes. To illustrate this approach, we focused our analysis on secondary metabolism glycosyltransferases (UGTs), a multigenic family involved in the conjugation of small molecules to sugars like glucose. We propose that UGT74B1 and UGT74C1 may be involved in aromatic and aliphatic glucosinolates synthesis, respectively. We also suggest that UGT75C1 may function as an anthocyanin-5-O-glucosyltransferase in planta. Therefore, this data-mining approach appears very powerful for the functional prediction of unknown genes, and could be transposed to virtually any other gene family. Finally, we suggest that analysis of expression pattern divergence of duplicated genes also provides some insight into the mechanisms of metabolic pathway evolution.


Assuntos
Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Análise por Conglomerados , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Flavonoides/metabolismo , Perfilação da Expressão Gênica/estatística & dados numéricos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Fenilpropionatos/metabolismo , Filogenia , Transcrição Gênica/genética , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...