Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36976970

RESUMO

The Polluscope project aims to better understand the personal exposure to air pollutants in the Paris region. This article is based on one campaign from the project, which was conducted in the autumn of 2019 and involved 63 participants equipped with portable sensors (i.e., NO2, BC and PM) for one week. After a phase of data curation, analyses were performed on the results from all participants, as well as on individual participants' data for case studies. A machine learning algorithm was used to allocate the data to different environments (e.g., transportation, indoor, home, office, and outdoor). The results of the campaign showed that the participants' exposure to air pollutants depended very much on their lifestyle and the sources of pollution that may be present in the vicinity. Individuals' use of transportation was found to be associated with higher levels of pollutants, even when the time spent on transport was relatively short. In contrast, homes and offices were environments with the lowest concentrations of pollutants. However, some activities performed in indoor air (e.g., cooking) also showed a high levels of pollution over a relatively short period.

2.
Toxics ; 10(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35051075

RESUMO

Portable sensors have emerged as a promising solution for personal exposure (PE) measurement. For the first time in Île-de-France, PE to black carbon (BC), particulate matter (PM), and nitrogen dioxide (NO2) was quantified based on three field campaigns involving 37 volunteers from the general public wearing the sensors all day long for a week. This successful deployment demonstrated its ability to quantify PE on a large scale, in various environments (from dense urban to suburban, indoor and outdoor) and in all seasons. The impact of the visited environments was investigated. The proximity to road traffic (for BC and NO2), as well as cooking activities and tobacco smoke (for PM), made significant contributions to total exposure (up to 34%, 26%, and 44%, respectively), even though the time spent in these environments was short. Finally, even if ambient outdoor levels played a role in PE, the prominent impact of the different environments suggests that traditional ambient monitoring stations is not a proper surrogate for PE quantification.

3.
Sci Total Environ ; 711: 135055, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810669

RESUMO

Wood burning is widely used for domestic heating and has been identified as a ubiquitous pollution source in urban areas, especially during cold months. The present study is based on a three and a half winter months field campaign in the Paris region measuring Volatile Organic Compounds (VOCs) by Proton Transfer Reaction Mass Spectrometry (PTR-MS) in addition to Black Carbon (BC). Several VOCs were identified as strongly wood burning-influenced (e.g., acetic acid, furfural), or traffic-influenced (e.g., toluene, C8-aromatics). Methylbutenone, benzenediol and butandione were identified for the first time as wood burning-related in ambient air. A Positive Matrix Factorization (PMF) analysis highlighted that wood burning is the most important source of VOCs during the winter season. (47%). Traffic was found to account for about 22% of the measured VOCs during the same period, whereas solvent use plus background accounted altogether for the remaining fraction. The comparison with the regional emission inventory showed good consistency for benzene and xylenes but revisions of the inventory should be considered for several VOCs such as acetic acid, C9-aromatics and methanol. Finally, complementary measurements acquired simultaneously at other sites in Île-de-France (the Paris region) enabled evaluation of spatial variabilities. The influence of traffic emissions on investigated pollutants displayed a clear negative gradient from roadside to suburban stations, whereas wood burning pollution was found to be fairly homogeneous over the region.

4.
Sci Total Environ ; 708: 134698, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31791756

RESUMO

The field of small air quality sensors is of growing interest within the scientific community, especially because this new technology is liable to improve air pollutant monitoring as well as be used for personal exposure quantification. Amongst the myriad existing devices, the performances are highly variable; this is why the sensors must be rigorously assessed before deployment, according to the intended use. This study is included in the Polluscope project; its purpose is to quantify personal exposure to air pollutants by using portable sensors. This paper designs and applies a methodology for the evaluation of portable air quality sensors to eight devices measuring PM, BC, NO2 and O3. The dedicated testing protocol includes static ambient air measurements compared with reference instruments, controlled chamber and mobility tests, as well as reproducibility evaluation. Three sensors (AE51, Cairclip and Canarin) were retained to be used for the field campaigns. The reliability of their performances were robustly quantified by using several metrics. These three devices (for a total of 36 units) were deployed to be worn by volunteers for a week. The results show the ability of sensors to discriminate between different environments (i.e., cooking, commuting or in an office). This work demonstrates, first, the ability of the three selected sensors to deliver data reliable enough to enable personal exposure estimations, and second, the robustness of this testing methodology.

5.
Langmuir ; 30(44): 13125-36, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25351469

RESUMO

This paper presents a microfluidic method for precise control of the size and polydispersity of surfactant-DNA nanoparticles. A mixture of surfactant and DNA dispersed in 35% ethanol is focused between two streams of pure water in a microfluidic channel. As a result, a rapid change of solvent quality takes place in the central stream, and the surfactant-bound DNA molecules undergo a fast coil-globule transition. By adjusting the concentrations of DNA and surfactant, fine-tuning of the nanoparticle size, down to a hydrodynamic diameter of 70 nm with a polydispersity index below 0.2, can be achieved with a good reproducibility.


Assuntos
DNA/química , Hidrodinâmica , Técnicas Analíticas Microfluídicas , Nanopartículas/química , Tensoativos/química , Animais , Bacteriófago lambda/química , Bovinos , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...