Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37106969

RESUMO

We tested for a forage allowance effect on the milk yield of early lactation dairy cow herds grazing swards sown with perennial ryegrass (Lolium perenne L.), white clover (Trifolium repens L.) and plantain (Plantago lanceolata L.) relative to perennial ryegrass alone. The examined allowances consisted of offering 12, 14, 16, 18, 20 or 25 kg of dry matter (DM)/cow per day of grazeable herbage, with diverse swards sown as mixtures and spatially adjacent monocultures. After adapting cows to their assigned forage type for 8 days, treatment effects on milk yield and composition, blood metabolites (beta-hydroxybutyrate, non-esterified fatty acids and urea concentrations), body weight change, forage intake and selection differentials for forage species and certain nutrients were monitored over 7 days. We confirmed a forage allowance effect on milk yield improvements in dairy cows grazing diverse swards relative to perennial ryegrass monocultures. Improvements in milk yield were evident at forage allowances of 14 to 20 kg of DM/cow per day, diminishing at the highest allowance of 25 kg of DM/cow per day. Improvements in milk yield for the mixture and spatially adjacent monocultures peaked at forage allowances of 18 and 16 kg of DM/cow per day, equalling increases of 1.3 and 1.2 kg of milk/cow per day, respectively.

2.
J Dairy Sci ; 104(6): 7071-7083, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33814143

RESUMO

Virtual fencing is promoted as the next advancement for rotational grazing systems. This experiment compared the capacity of conventional temporary electric versus virtual fencing to contain a herd of 30 lactating dairy cows within the boundaries of their daily pasture allocation (inclusion zone). Cows were moved each day to a new rectangular paddock that was divided crosswise into an inclusion and exclusion zone by a single linear electric (first 10 d) or virtual (second 10 d) front-fence. A 3-d virtual fence training period separated the 2 treatments. Virtual fences were imposed using a pre-commercial prototype of the eShepherd virtual fencing system (Agersens Pty Ltd.). Neckband-mounted devices replaced the visual cue of an electric fence with benign audio cues, which if ignored were accompanied by an aversive electrical stimulus. Cows learned to respond to the audio cues to avoid receiving electrical stimuli, with the daily ratio of electrical to audio signals for individual cows averaging (± standard deviation) 0.18 ± 0.27 over the 10 d of virtual fence deployment. Unlike the electric fence, the virtual fence did not fully eliminate cow entry into the exclusion zone, but individual cows were generally contained within the inclusion zone ≥99% of the time. Pasture depletion within the inclusion zone reduced the efficacy of the virtual fence in preventing cows from entering the exclusion zone, but the magnitude of this effect was insignificant in practical terms (i.e., increased time spent in the exclusion zone by ≤28 s/h per cow). This highlights the potential for virtual fences to control grazing dairy cow movement even when pasture availability is limited (i.e., 1 kg of dry matter/cow above a target residual of 1,500 kg of dry matter/ha), but requires confirmation under longer and more complex virtual fencing applications. Within each treatment period, uniform daily pasture utilization (% of pasture consumed above a target residual of 1,500 kg of dry matter/ha) within inclusion zones indicates that cows did not avoid grazing near electric or virtual front-fences. Overall, this study demonstrated a successful simple application of this virtual fencing system to contain a herd of grazing lactating dairy cows within the boundaries of their daily pasture allocation.


Assuntos
Lactação , Leite , Ração Animal/análise , Animais , Bovinos , Indústria de Laticínios , Dieta , Feminino , Tecnologia
3.
J Dairy Sci ; 104(6): 7084-7094, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33814145

RESUMO

Virtual fencing technology uses a neckband-mounted device to deliver an audio cue when an animal nears a virtual boundary that is set via a global positioning system, followed by an electrical stimulus if it crosses the boundary. The flexibility offered by this technology could revolutionize grazing management on dairy farms, but its application and effects on lactating dairy cattle have not been assessed. This experiment reports on the effects of an electric or a virtual front-fence on dairy cow behavior and welfare. Two temporally separated treatments were applied to a herd of 30 multiparous cows. Cows were provided an estimated 14 to 15 kg of dry matter/cow of fresh pasture in a new paddock every 24 h. From d 1 to 10 cows were grazed using a conventional electric front-fence (control treatment) and from d 14 to 23 they were grazed using a virtual front-fence (eShepherd, Agersens Pty Ltd.). Cows were trained to the technology from d 11 to 13. The milk production and live weight of individual cows were recorded daily. Cortisol concentrations were obtained from milk samples collected from individual cows on 3 d during each of the control and the virtual fence grazing periods, plus the first day of training. From d 6 of the experiment, 6 focal cows were fitted with a RumiWatch (Itin + Hoch GmbH) noseband sensor to monitor grazing and ruminating time, and 8 focal cows were fitted with an IceTag (IceRobotics Ltd.) sensors to monitor activity. Milk production, live weight, and the time cows spent standing and lying did not differ between the electric and virtual fence periods. Milk cortisol concentrations, activity, and the times spent ruminating and grazing were comparable between the electric and early virtual fence periods (i.e., d 1-3 with a virtual fence). However, at d 4 to 6 with a virtual fence, activity (steps taken and motion index) and time spent grazing were lower, and time spent ruminating was greater, compared with an electric fence. Further, least significant difference tests suggest milk cortisol concentrations were higher at d 5 with a virtual fence than at d 8 with an electric fence and d 1 with a virtual fence. We conclude there is no evidence of behavioral and welfare effects of virtual fencing on dairy cows in the days immediately following implementation of the technology in a simple intensive grazing regimen, but a longer study is required to fully elucidate effects beyond this period.


Assuntos
Indústria de Laticínios , Lactação , Animais , Comportamento Animal , Bovinos , Comportamento Alimentar , Feminino , Leite , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...