Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J AOAC Int ; 103(3): 792-799, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241371

RESUMO

BACKGROUND: Diarrhetic shellfish toxins (DSTs) in domestic shellfish and azaspiracids (AZAs) in imported products are emerging seafood safety issues in the United States. In addition to causing gastrointestinal illnesses, some of these toxins are also carcinogenic and genotoxic. Efficient analytical strategies are needed for their monitoring in U.S. domestic and imported shellfish. OBJECTIVE: In the US, DSTs and AZAs are the only lipophilic shellfish toxins addressed in regulations. Streamlining of existing methods for several classes of lipophilic toxins, based on liquid chromatography coupled with triple quadrupole mass spectrometry, was pursued. METHOD: The resulting simplified LC-MS/MS method is focused on the separation and detection of just the AZAs and total DSTs using a C18 Hypersil gold column. Filter vials are used to expedite and simplify sample handling. RESULTS: The method has a run time of 7.25 min. LOQs for the AZAs and DSTs in shellfish were 0.3-0.4 µg/kg. Recoveries (AZAs and total DSTs) for three spiking levels in three matrixes ranged from 68 to 129%. Trueness was established using certified reference materials. Method equivalence was established using shellfish provided blind by the Washington State Department of Health Public Health Laboratory (WA DOH PHL). Data obtained from these samples agreed well with data from another LC-MS/MS method used in harvest control by WA DOH PHL (R = 0.999; P < 0.0001). CONCLUSIONS: The LC-MS/MS method described offers more rapid sample handling and has excellent sensitivity, linearity, and repeatability.


Assuntos
Frutos do Mar , Espectrometria de Massas em Tandem , Cromatografia Líquida , Toxinas Marinhas , Alimentos Marinhos/análise , Frutos do Mar/análise , Compostos de Espiro , Washington
2.
Toxins (Basel) ; 12(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825482

RESUMO

Dihydrodinophysistoxin-1 (dihydro-DTX1, (M-H)-m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and in 2018 during blooms of the dinoflagellate Dinophysis norvegica. Toxin screening by protein phosphatase inhibition (PPIA) first detected the presence of diarrhetic shellfish poisoning-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) failed to detect okadaic acid (OA, (M-H)-m/z 803.5), dinophysistoxin-1 (DTX1, (M-H)-m/z 817.5), or dinophysistoxin-2 (DTX2, (M-H)-m/z 803.5) in samples collected during the bloom. Bioactivity-guided fractionation followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS measurements showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of D. norvegica in both years, with results correlating well with PPIA testing. Two laboratory cultures of D. norvegica isolated from the 2018 bloom were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. Estimated concentrations of dihydro-DTX1 were >0.16 ppm in multiple shellfish species (max. 1.1 ppm) during the blooms in 2016 and 2018. Assuming an equivalent potency and molar response to DTX1, the authority initiated precautionary shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish in the Gulf of Maine region and studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance.


Assuntos
Dinoflagellida/isolamento & purificação , Toxinas Marinhas/análise , Ácido Okadáico/análogos & derivados , Frutos do Mar/análise , Animais , Dinoflagellida/química , Maine , Toxinas Marinhas/toxicidade , Ácido Okadáico/análise , Ácido Okadáico/toxicidade , Fitoplâncton/química , Fitoplâncton/isolamento & purificação , Frutos do Mar/toxicidade , Intoxicação por Frutos do Mar/diagnóstico , Intoxicação por Frutos do Mar/etiologia , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...