Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 187: 106309, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37748620

RESUMO

In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-ß plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.

2.
J Alzheimers Dis ; 93(1): 211-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970900

RESUMO

BACKGROUND: Altered social behavior is one of the symptoms of Alzheimer's disease (AD) that results in social withdrawal and loneliness and provides a major burden on patients and their relatives. Furthermore, loneliness is associated with an increased risk to develop AD and related dementias. OBJECTIVE: We aimed to investigate if altered social behavior is an early indicator of amyloid-ß (Aß) pathology in J20 mice, and if co-housing with wild type (WT) mice can positively influence this social phenotype. METHODS: The social phenotype of group-housed mice was assessed using an automated behavioral scoring system for longitudinal recordings. Female mice were housed in a same-genotype (4 J20 or WT mice per colony) or mixed-genotype (2 J20 mice + 2 WT mice) colony. At 10 weeks of age, their behavior was assessed for five consecutive days. RESULTS: J20 mice showed increased locomotor activity and social sniffing, and reduced social contact compared to WT mice housed in same-genotype colonies. Mixed-genotype housing reduced the social sniffing duration of J20 mice, increased social contact frequency of J20 mice, and increased nest hide by WT mice. CONCLUSION: Thus, altered social behavior can be used as an early indicator of Aß-pathology in female J20 mice. Additionally, when co-housed with WT mice, their social sniffing phenotype is not expressed and their social contact phenotype is reduced. Our findings highlight the presence of a social phenotype in the early stages of AD and indicate a role for social environment variation in the expression of social behavior of WT and J20 mice.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Camundongos , Feminino , Animais , Camundongos Transgênicos , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fenótipo , Modelos Animais de Doenças
3.
Mol Psychiatry ; 28(1): 28-33, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858991

RESUMO

Many psychiatric and neurological disorders present deficits in both the social and cognitive domain. In this perspectives article, we provide an overview and the potential of the existence of an extensive neurobiological substrate underlying the close relationship between these two domains. By mapping the rodent brain regions involved in the social and/or cognitive domain, we show that the vast majority of brain regions involved in the cognitive domain are also involved in the social domain. The identified neuroanatomical overlap has an evolutionary basis, as complex social behavior requires cognitive skills, and aligns with the reported functional interactions of processes underlying cognitive and social performance. Based on the neuroanatomical mapping, recent (pre-)clinical findings, and the evolutionary perspective, we emphasize that the social domain requires more focus as an important treatment target and/or biomarker, especially considering the presently limited treatment strategies for these disorders.


Assuntos
Encefalopatias , Encéfalo , Humanos , Comportamento Social , Cognição , Mapeamento Encefálico
4.
Eur J Neurosci ; 55(9-10): 2666-2683, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33840130

RESUMO

Glucocorticoids enhance memory consolidation of emotionally arousing events via largely unknown molecular mechanisms. This glucocorticoid effect on the consolidation process also requires central noradrenergic neurotransmission. The intracellular pathways of these two stress mediators converge on two transcription factors: the glucocorticoid receptor (GR) and phosphorylated cAMP response element-binding protein (pCREB). We therefore investigated, in male rats, whether glucocorticoid effects on memory are associated with genomic interactions between the GR and pCREB in the hippocampus. In a two-by-two design, object exploration training or no training was combined with post-training administration of a memory-enhancing dose of corticosterone or vehicle. Genomic effects were studied by chromatin immunoprecipitation followed by sequencing (ChIP-seq) of GR and pCREB 45 min after training and transcriptome analysis after 3 hr. Corticosterone administration induced differential GR DNA-binding and regulation of target genes within the hippocampus, largely independent of training. Training alone did not result in long-term memory nor did it affect GR or pCREB DNA-binding and gene expression. No strong evidence was found for an interaction between GR and pCREB. Combination of the GR DNA-binding and transcriptome data identified a set of novel, likely direct, GR target genes that are candidate mediators of corticosterone effects on memory consolidation. Cell-specific expression of the identified target genes using single-cell expression data suggests that the effects of corticosterone reflect in part non-neuronal cells. Together, our data identified new GR targets associated with memory consolidation that reflect effects in both neuronal and non-neuronal cells.


Assuntos
Glucocorticoides , Consolidação da Memória , Animais , Corticosterona/metabolismo , Corticosterona/farmacologia , DNA/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Hipocampo/metabolismo , Masculino , Ratos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
5.
Glia ; 69(11): 2752-2766, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343377

RESUMO

We have recently identified a novel plasticity protein, doublecortin-like (DCL), that is specifically expressed in the shell of the mouse suprachiasmatic nucleus (SCN). DCL is implicated in neuroplastic events, such as neurogenesis, that require structural rearrangements of the microtubule cytoskeleton, enabling dynamic movements of cell bodies and dendrites. We have inspected DCL expression in the SCN by confocal microscopy and found that DCL is expressed in GABA transporter-3 (GAT3)-positive astrocytes that envelope arginine vasopressin (AVP)-expressing cells. To investigate the role of these DCL-positive astrocytes in circadian rhythmicity, we have used transgenic mice expressing doxycycline-induced short-hairpin (sh) RNA's targeting DCL mRNA (DCL knockdown mice). Compared with littermate wild type (WT) controls, DCL-knockdown mice exhibit significant shorter circadian rest-activity periods in constant darkness and adjusted significantly faster to a jet-lag protocol. As DCL-positive astrocytes are closely associated with AVP-positive cells, we analyzed AVP expression in DCL-knockdown mice and in their WT littermates by 3D reconstructions and transmission electron microscopy (TEM). We found significantly higher numbers of AVP-positive cells with increased volume and more intensity in DCL-knockdown mice. We found alterations in the numbers of dense core vesicle-containing neurons at ZT8 and ZT20 suggesting that the peak and trough of neuropeptide biosynthesis is dampened in DCL-knockdown mice compared to WT littermates. Together, our data suggest an important role for the astrocytic plasticity in the regulation of circadian rhythms and point to the existence of a specific DCL+ astrocyte-AVP+ neuronal network located in the dorsal SCN implicated in AVP biosynthesis.


Assuntos
Astrócitos , Ritmo Circadiano , Animais , Astrócitos/metabolismo , Ritmo Circadiano/fisiologia , Proteínas do Domínio Duplacortina , Quinases Semelhantes a Duplacortina , Camundongos , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...