Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770167

RESUMO

The dry reforming of methane (DRM) was studied for seven hours at 800 °C and 42 L/(g·h) gas hourly space velocity over Ni-based catalysts, promoted with various amounts of gadolinium oxide (x = 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt.%) and supported on mesoporous yttrium-zirconium oxide (YZr). The best catalyst was found to have 4.0 wt.% of gadolinium, which resulted in ∼80% and ∼86% conversions of CH4 and CO2, respectively, and a mole ratio of ∼0.90 H2/CO. The addition of Gd2O3 shifted the diffraction peaks of the support to higher angles, indicating the incorporation of the promoter into the unit cell of the YZr support. The Gd2O3 promoter improved the catalyst basicity and the interaction of NiO with support, which were reflected in the coke resistance (6.0 wt.% carbon deposit on 5Ni+4Gd/YZr; 19.0 wt.% carbon deposit on 5Ni/YZr) and the stability of our catalysts. The Gd2O3 is believed to react with carbon dioxide to form oxycarbonate species and helps to gasify the surface of the catalysts. In addition, the Gd2O3 enhanced the activation of CH4 and its conversion on the metallic nickel sites.

2.
Materials (Basel) ; 15(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35629591

RESUMO

Methane Dry Reforming is one of the means of producing syngas. CeNi0.9Zr0.1O3 catalyst and its modification with yttrium were investigated for CO2 reforming of methane. The experiment was performed at 800 °C to examine the effect of yttrium loading on catalyst activity, stability, and H2/CO ratio. The catalyst activity increased with an increase in yttrium loading with CeNi0.9Zr0.01Y0.09O3 catalyst demonstrating the best activity with CH4 conversion >85% and CO2 conversion >90% while the stability increased with increases in zirconium loading. The specific surface area of samples ranged from 1−9 m2/g with a pore size of 12−29 nm. The samples all showed type IV isotherms. The XRD peaks confirmed the formation of a monoclinic phase of zirconium and the well-crystallized structure of the perovskite catalyst. The Temperature Program Reduction analysis (TPR) showed a peak at low-temperature region for the yttrium doped catalyst while the un-modified perovskite catalyst (CeNi0.9Zr0.1O3) showed a slight shift to a moderate temperature region in the TPR profile. The Thermogravimetric analysis (TGA) curve showed a weight loss step in the range of 500−700 °C, with CeNi0.9Zr0.1O3 having the least carbon with a weight loss of 20%.

3.
Sci Rep ; 10(1): 13861, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807834

RESUMO

The generation of synthesis gas (hydrogen and carbon monoxide mixture) from two global warming gases of carbon dioxide and methane via dry reforming is environmentally crucial and for the chemical industry as well. Herein, magnesium-promoted NiO supported on mesoporous zirconia, 5Ni/xMg-ZrO2 (x = 0, 3, 5, 7 wt%) were prepared by wet impregnation method and then were tested for syngas production via dry reforming of methane. The reaction temperature at 800 °C was found more catalytically active than that at 700 °C due to the endothermic feature of reaction which promotes efficient CH4 catalytic decomposition over Ni and Ni-Zr interface as confirmed by CH4-TSPR experiment. NiO-MgO solid solution interacted with ZrO2 support was found crucial and the reason for high CH4 and CO2 conversions. The highest catalyst stability of the 5Ni/3Mg-ZrO2 catalyst was explained by the ability of CO2 to partially oxidize the carbon deposit over the surface of the catalyst. A mole ratio of hydrogen to carbon monoxide near unity (H2/CO ~ 1) was obtained over 5Ni/ZrO2 and 5Ni/5Mg-ZrO2, implying the important role of basic sites. Our approach opens doors for designing cheap and stable dry reforming catalysts from two potent greenhouse gases which could be of great interest for many industrial applications, including syngas production and other value-added chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...