Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
iScience ; 27(6): 109981, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868191

RESUMO

Encounters with pathogens and other molecules can imprint long-lasting effects on our immune system, influencing future physiological outcomes. Given the wide range of microbes to which humans are exposed, their collective impact on health is not fully understood. To explore relations between exposures and biological aging and inflammation, we profiled an antibody-binding repertoire against 2,815 microbial, viral, and environmental peptides in a population cohort of 1,443 participants. Utilizing antibody-binding as a proxy for past exposures, we investigated their impact on biological aging, cell composition, and inflammation. Immune response against cytomegalovirus (CMV), rhinovirus, and gut bacteria relates with telomere length. Single-cell expression measurements identified an effect of CMV infection on the transcriptional landscape of subpopulations of CD8 and CD4 T-cells. This examination of the relationship between microbial exposures and biological aging and inflammation highlights a role for chronic infections (CMV and Epstein-Barr virus) and common pathogens (rhinoviruses and adenovirus C).

2.
iScience ; 26(7): 107053, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37360685

RESUMO

How many times does a typical hematopoietic stem cell (HSC) divide to maintain a daily production of over 1011 blood cells over a human lifetime? It has been predicted that relatively few, slowly dividing HSCs occupy the top of the hematopoietic hierarchy. However, tracking HSCs directly is extremely challenging due to their rarity. Here, we utilize previously published data documenting the loss of telomeric DNA repeats in granulocytes, to draw inferences about HSC division rates, the timing of major changes in those rates, as well as lifetime division totals. Our method uses segmented regression to identify the best candidate representations of the telomere length data. Our method predicts that, on average, an HSC divides 56 times over an 85-year lifespan (with lower and upper bounds of 36 and 120, respectively), with half of these divisions during the first 24 years of life.

3.
Cell Genom ; 3(1): 100233, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777186

RESUMO

Hundreds of loci in human genomes have alleles that are methylated differentially according to their parent of origin. These imprinted loci generally show little variation across tissues, individuals, and populations. We show that such loci can be used to distinguish the maternal and paternal homologs for all human autosomes without the need for the parental DNA. We integrate methylation-detecting nanopore sequencing with the long-range phase information in Strand-seq data to determine the parent of origin of chromosome-length haplotypes for both DNA sequence and DNA methylation in five trios with diverse genetic backgrounds. The parent of origin was correctly inferred for all autosomes with an average mismatch error rate of 0.31% for SNVs and 1.89% for insertions or deletions (indels). Because our method can determine whether an inherited disease allele originated from the mother or the father, we predict that it will improve the diagnosis and management of many genetic diseases.

4.
Nat Commun ; 14(1): 939, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805596

RESUMO

Alternative Lengthening of Telomeres (ALT) is an aberrant DNA recombination pathway which grants replicative immortality to approximately 10% of all cancers. Despite this high prevalence of ALT in cancer, the mechanism and genetics by which cells activate this pathway remain incompletely understood. A major challenge in dissecting the events that initiate ALT is the extremely low frequency of ALT induction in human cell systems. Guided by the genetic lesions that have been associated with ALT from cancer sequencing studies, we genetically engineered primary human pluripotent stem cells to deterministically induce ALT upon differentiation. Using this genetically defined system, we demonstrate that disruption of the p53 and Rb pathways in combination with ATRX loss-of-function is sufficient to induce all hallmarks of ALT and results in functional immortalization in a cell type-specific manner. We further demonstrate that ALT can be induced in the presence of telomerase, is neither dependent on telomere shortening nor crisis, but is rather driven by continuous telomere instability triggered by the induction of differentiation in ATRX-deficient stem cells.


Assuntos
Células-Tronco Pluripotentes , Telomerase , Humanos , Homeostase do Telômero/genética , Telômero/genética , Diferenciação Celular/genética , Telomerase/genética , Proteína Nuclear Ligada ao X/genética
5.
Methods Mol Biol ; 2590: 183-200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36335500

RESUMO

Dense local haplotypes can now readily be extracted from long-read or droplet-based sequence data. However, these methods struggle to combine subchromosomal haplotype blocks into global chromosome-length haplotypes. Strand-seq is a single cell sequencing technique that uses read orientation to capture sparse global phase information by sequencing only one of two DNA strands for each parental homolog. In combination with dense local haplotypes from other technologies, Strand-seq data can be used to obtain complete chromosome-length phase information. In this chapter, we run the R package StrandPhaseR to phase SNVs using publicly available sequence data for sample HG005 of the Genome in a Bottle project.


Assuntos
Cromossomos , Genoma , Haplótipos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Algoritmos
6.
Cell Genom ; 2(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36452119

RESUMO

Genome in a Bottle benchmarks are widely used to help validate clinical sequencing pipelines and develop variant calling and sequencing methods. Here we use accurate linked and long reads to expand benchmarks in 7 samples to include difficult-to-map regions and segmental duplications that are challenging for short reads. These benchmarks add more than 300,000 SNVs and 50,000 insertions or deletions (indels) and include 16% more exonic variants, many in challenging, clinically relevant genes not covered previously, such as PMS2. For HG002, we include 92% of the autosomal GRCh38 assembly while excluding regions problematic for benchmarking small variants, such as copy number variants, that should not have been in the previous version, which included 85% of GRCh38. It identifies eight times more false negatives in a short read variant call set relative to our previous benchmark. We demonstrate that this benchmark reliably identifies false positives and false negatives across technologies, enabling ongoing methods development.

7.
Arch Med Res ; 53(8): 741-746, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334946

RESUMO

Telomeres and telomerase play a crucial role in human aging and cancer. Three "drivers" of human aging can be identified. The developmental program encoded in DNA is the primary determinant of lifespan. Faithful execution of the developmental program requires stability of the (epi-)genome which is challenged throughout life by damage to DNA as well as epigenetic 'scars' from error-free DNA repair and stochastic errors made during the establishment and maintenance of the "epigenome". Over time (epi-)mutations accumulate, compromising cellular function and causing (pre-)malignant alterations. Damage to the genome and epigenome can be considered the second "driver" of aging. A third driver of the aging process, important to suppress tumors in long-lived animals, is caused by progressive loss of telomeric DNA. Telomere erosion protects against cancer early in life but limits cell renewal late in life, in agreement with the Antagonistic Pleiotropy theory on the evolutionary origin of aging. Malignant tumors arise when mutations and/or epimutations in cells (clock 2) corrupt the developmental program (clock 1) as well as tumor suppression by telomere erosion (clock 3). In cancer cells clock 3 is typically inactivated by loss of p53 as well as increased expression of telomerase. Taken together, aging in humans can be described by the ticking of three clocks: the clock that directs development, the accumulation of (epi-)mutations over time and the telomere clock that limits the number of cell divisions in normal stem and immune cells.


Assuntos
Neoplasias , Telomerase , Animais , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Neoplasias/genética , Envelhecimento/genética
8.
Nat Commun ; 13(1): 6722, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344511

RESUMO

Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Troca de Cromátide Irmã , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Sítios Frágeis do Cromossomo , Recombinação Homóloga/genética , DNA
9.
Hum Mutat ; 43(11): 1576-1589, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047337

RESUMO

Polymorphic inversions are ubiquitous in humans and they have been linked to both adaptation and disease. Following their discovery in Drosophila more than a century ago, inversions have proved to be more elusive than other structural variants. A wide variety of methods for the detection and genotyping of inversions have recently been developed: multiple techniques based on selective amplification by PCR, short- and long-read sequencing approaches, principal component analysis of small variant haplotypes, template strand sequencing, optical mapping, and various genome assembly methods. Many methods apply complex wet lab protocols or increasingly refined bioinformatic analyses. This review is an attempt to provide a practical summary and comparison of the methods that are in current use, with a focus on metrics such as the maximum size of segmental duplications at inversion breakpoints that each method can tolerate, the size range of inversions that they recover, their throughput, and whether the locations of putative inversions must be known beforehand.


Assuntos
Inversão Cromossômica , Drosophila , Animais , Inversão Cromossômica/genética , Drosophila/genética , Genótipo , Haplótipos , Humanos , Análise de Componente Principal
10.
PLoS One ; 17(7): e0268579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776704

RESUMO

Aneuploidy and chromosomal instability are both commonly found in cancer. Chromosomal instability leads to karyotype heterogeneity in tumors and is associated with therapy resistance, metastasis and poor prognosis. It has been hypothesized that aneuploidy per se is sufficient to drive CIN, however due to limited models and heterogenous results, it has remained controversial which aspects of aneuploidy can drive CIN. In this study we systematically tested the impact of different types of aneuploidies on the induction of CIN. We generated a plethora of isogenic aneuploid clones harboring whole chromosome or segmental aneuploidies in human p53-deficient RPE-1 cells. We observed increased segregation errors in cells harboring trisomies that strongly correlated to the number of gained genes. Strikingly, we found that clones harboring only monosomies do not induce a CIN phenotype. Finally, we found that an initial chromosome breakage event and subsequent fusion can instigate breakage-fusion-bridge cycles. By investigating the impact of monosomies, trisomies and segmental aneuploidies on chromosomal instability we further deciphered the complex relationship between aneuploidy and CIN.


Assuntos
Aneuploidia , Trissomia , Instabilidade Cromossômica , Testes Genéticos , Humanos , Monossomia , Trissomia/genética
11.
Front Oncol ; 12: 943622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860550

RESUMO

The number of (TTAGGG)n repeats at the ends of chromosomes is highly variable between individual chromosomes, between different cells and between species. Progressive loss of telomere repeats limits the proliferation of pre-malignant human cells but also contributes to aging by inducing apoptosis and senescence in normal cells. Despite enormous progress in understanding distinct pathways that result in loss and gain of telomeric DNA in different cell types, many questions remain. Further studies are needed to delineate the role of damage to telomeric DNA, replication errors, chromatin structure, liquid-liquid phase transition, telomeric transcripts (TERRA) and secondary DNA structures such as guanine quadruplex structures, R-loops and T-loops in inducing gains and losses of telomere repeats in different cell types. Limitations of current telomere length measurements techniques and differences in telomere biology between species and different cell types complicate generalizations about the role of telomeres in aging and cancer. Here some of the factors regulating the telomere length in embryonic and adult cells in mammals are discussed from a mechanistic and evolutionary perspective.

12.
Commun Biol ; 5(1): 565, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681050

RESUMO

The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.


Assuntos
Envelhecimento , Telômero , Envelhecimento/genética , Epigênese Genética , Feminino , Humanos , Estilo de Vida , Pais , Gravidez , Telômero/genética
13.
Cell Rep Methods ; 2(1): 100150, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35474869

RESUMO

Single-cell Strand-seq generates directional genomic information to study DNA repair, assemble genomes, and map structural variation onto chromosome-length haplotypes. We report a nanoliter-volume, one-pot (OP) Strand-seq library preparation protocol in which reagents are added cumulatively, DNA purification steps are avoided, and enzymes are inactivated with a thermolabile protease. OP-Strand-seq libraries capture 10%-25% of the genome from a single-cell with reduced costs and increased throughput.


Assuntos
Genômica , Genômica/métodos , Haplótipos
14.
Methods ; 204: 64-72, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35483548

RESUMO

Mammalian genomes encode over a hundred different helicases, many of which are implicated in the repair of DNA lesions by acting on DNA structures arising during DNA replication, recombination or transcription. Defining the in vivo substrates of such DNA helicases is a major challenge given the large number of helicases in the genome, the breadth of potential substrates in the genome and the degree of genetic pleiotropy among DNA helicases in resolving diverse substrates. Helicases such as WRN, BLM and RECQL5 are implicated in the resolution of error-free recombination events known as sister chromatid exchange events (SCEs). Single cell Strand-seq can be used to map the genomic location of individual SCEs at a resolution that exceeds that of classical cytogenetic techniques by several orders of magnitude. By mapping the genomic locations of SCEs in the absence of different helicases, it should in principle be possible to infer the substrate specificity of specific helicases. Here we describe how the genome can be interrogated for such DNA repair events using single-cell template strand sequencing (Strand-seq) and bioinformatic tools. SCEs and copy-number alterations were mapped to genomic locations at kilobase resolution in haploid KBM7 cells. Strategies, possibilities, and limitations of Strand-seq to study helicase function are illustrated using these cells before and after CRISPR/Cas9 knock out of WRN, BLM and/or RECQL5.


Assuntos
Replicação do DNA , Troca de Cromátide Irmã , Animais , DNA/química , DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Genoma , Mamíferos , Troca de Cromátide Irmã/genética
15.
Aging Cell ; 21(5): e13614, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35441417

RESUMO

Telomerase levels in most human cells are insufficient to prevent loss of telomeric DNA with each replication cycle. The resulting "Hayflick" limit may have allowed lifespan to increase by suppressing the development of tumors early in life be it at the expense of compromised cellular responses late in life. At any given age, the average telomere length in leukocytes shows considerably variation between individuals with females having, on average, longer telomeres than males. Sex differences in average telomere length are already present at birth and correspond to reported differences in the average life expectancy between the sexes. Levels of telomerase RNA and dyskerin, encoded by DKC1, are known to limit telomerase activity in embryonic stem cells. X-linked DKC1 is expressed from both alleles in female embryo cells and higher levels of dyskerin and telomerase could elongate telomeres prior to embryo implantation. The hypothesis that embryonic telomerase levels set the stage for the sex differences in telomere length and lifespan deserves further study.


Assuntos
Disceratose Congênita , Telomerase , Proteínas de Ciclo Celular/metabolismo , Disceratose Congênita/genética , Disceratose Congênita/patologia , Feminino , Humanos , Recém-Nascido , Longevidade/genética , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Caracteres Sexuais , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo
16.
Blood ; 139(6): 813-821, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142846

RESUMO

The role of telomeres in human health and disease is yet to be fully understood. The limitations of mouse models for the study of human telomere biology and difficulties in accurately measuring the length of telomere repeats in chromosomes and cells have diverted attention from many important and relevant observations. The goal of this perspective is to summarize some of these observations and to discuss the antagonistic role of telomere loss in aging and cancer in the context of developmental biology, cell turnover, and evolution. It is proposed that both damage to DNA and replicative loss of telomeric DNA contribute to aging in humans, with the differences in leukocyte telomere length between humans being linked to the risk of developing specific diseases. These ideas are captured in the Telomere Erosion in Disposable Soma theory of aging proposed herein.


Assuntos
Envelhecimento , Neoplasias/genética , Encurtamento do Telômero , Telômero/genética , Animais , DNA/genética , DNA/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Humanos , Mutação , Neoplasias/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo
17.
Br J Cancer ; 126(3): 409-418, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34848855

RESUMO

BACKGROUND: Circulating tumour cells (CTCs) can be used to monitor cancer longitudinally, but their use in non-small cell lung cancer (NSCLC) is limited due to low numbers in the peripheral blood. Through diagnostic leukapheresis (DLA) CTCs can be obtained from larger blood volumes. METHODS: Patients with all stages of NSCLC were selected. One total body blood volume was screened by DLA before and after treatment. Peripheral blood was drawn pre- and post DLA for CTC enumeration by CellSearch. CTCs were detected in the DLA product (volume equalling 2 × 108 leucocytes) and after leucocyte depletion (RosetteSep, 9 mL DLA product). Single-cell, whole-genome sequencing was performed on isolated CTCs. RESULTS: Fifty-six patients were included. Before treatment, CTCs were more often detected in DLA (32/55, 58%) than in the peripheral blood (pre-DLA: 18/55, 33%; post DLA: 13/55, 23%, both at p < 0.01). CTCs per 7.5 mL DLA product were median 9.2 times (interquartile range = 5.6-24.0) higher than CTCs in 7.5 mL blood. RosetteSEP did not significantly improve CTC detection (pretreatment: 34/55, 62%, post treatment: 16/34, 47%) and CTCs per mL even decreased compared to DLA (p = 0.04).. Patients with advanced-stage disease with DLA-CTC after treatment showed fewer tumour responses and shorter progression-free survival (PFS) than those without DLA-CTC (median PFS, 2.0 vs 12.0 months, p < 0.01). DLA-CTC persistence after treatment was independent of clinical factors associated with shorter PFS (hazard ratio (HR) = 5.8, 95% confidence interval (CI), 1.4-35.5, p = 0.02). All evaluable CTCs showed aneuploidy. CONCLUSIONS: DLA detected nine times more CTCs than in the peripheral blood. The sustained presence of CTCs in DLA after treatment was associated with therapy failure and shortened PFS. TRIAL REGISTRATION: The study was approved by the Medical Ethical Committee (NL55754.042.15) and was registered in the Dutch trial register (NL5423).


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Leucaférese/métodos , Neoplasias Pulmonares/mortalidade , Células Neoplásicas Circulantes/patologia , Análise de Célula Única/métodos , Idoso , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Contagem de Células , Feminino , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Taxa de Sobrevida , Resultado do Tratamento , Sequenciamento Completo do Genoma/métodos
18.
Hum Mol Genet ; 31(7): 1159-1170, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34875050

RESUMO

Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold Pmeta = 6.5 × 10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-CE %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-CE) became significantly associated with LTL (P = 3.6 × 10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (P = 1.9 × 10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation.


Assuntos
Leucócitos , Encurtamento do Telômero , Biomarcadores/metabolismo , Estudos Transversais , Ácidos Graxos/metabolismo , Humanos , Leucócitos/metabolismo , Lipídeos , Telômero/genética
19.
ACS Chem Biol ; 16(11): 2193-2201, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592816

RESUMO

Following DNA replication, equal amounts of chromatin proteins are distributed over sister chromatids by re-deposition of parental chromatin proteins and deposition of newly synthesized chromatin proteins. Molecular mechanisms balancing the allocation of new and old chromatin proteins remain largely unknown. Here, we studied the genome-wide distribution of new chromatin proteins relative to parental DNA template strands and replication initiation zones using the double-click-seq. Under control conditions, new chromatin proteins were preferentially found on DNA replicated by the lagging strand machinery. Strikingly, replication stress induced by hydroxyurea or curaxin treatment and inhibition of ataxia telangiectasia and Rad3-related protein (ATR) or p53 inactivation inverted the observed chromatin protein deposition bias to the strand replicated by the leading strand polymerase in line with previously reported effects on replication protein A occupancy. We propose that asymmetric deposition of newly synthesized chromatin proteins onto sister chromatids reflects differences in the processivity of leading and lagging strand synthesis.


Assuntos
Cromatina/metabolismo , Replicação do DNA/fisiologia , Hidroxiureia/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
BMC Genomics ; 22(1): 582, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332539

RESUMO

BACKGROUND: Single cell Strand-seq is a unique tool for the discovery and phasing of genomic inversions. Conventional methods to discover inversions with Strand-seq data are blind to known inversion locations, limiting their statistical power for the detection of inversions smaller than 10 Kb. Moreover, the methods rely on manual inspection to separate false and true positives. RESULTS: Here we describe "InvertypeR", a method based on a Bayesian binomial model that genotypes inversions using fixed genomic coordinates. We validated InvertypeR by re-genotyping inversions reported for three trios by the Human Genome Structural Variation Consortium. Although 6.3% of the family inversion genotypes in the original study showed Mendelian discordance, this was reduced to 0.5% using InvertypeR. By applying InvertypeR to published inversion coordinates and predicted inversion hotspots (n = 3701), as well as coordinates from conventional inversion discovery, we furthermore genotyped 66 inversions not previously reported for the three trios. CONCLUSIONS: InvertypeR discovers, genotypes, and phases inversions without relying on manual inspection. For greater accessibility, results are presented as phased chromosome ideograms with inversions linked to Strand-seq data in the genome browser. InvertypeR increases the power of Strand-seq for studies on the role of inversions in phenotypic variation, genome instability, and human disease.


Assuntos
Inversão Cromossômica , Genoma Humano , Teorema de Bayes , Genótipo , Haplótipos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...