Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G136-G152, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237796

RESUMO

Bowel resection accelerates enterocyte proliferation in the remaining gut with suboptimal absorptive and digestive capacity because of a proliferation-associated decrease in functional differentiation markers. We hypothesized that although schlafen 3 (Slfn3) is an important regulator of enterocytic differentiation, Slfn3 would have less impact on bowel resection adaptation, where accelerated proliferation takes priority over differentiation. We assessed proliferation, cell shedding, and enterocyte differentiation markers from resected and postoperative bowel of wild-type (WT) and Slfn3-knockout (Slfn3KO) mice. Villus length and crypt depth were increased in WT mice and were even longer in Slfn3KO mice. Mitotic marker, Phh3+, and the proliferation markers Lgr5, FoxL1, and platelet-derived growth factor-α (PDGFRα) were increased after resection in male WT, but this was blunted in male Slfn3KO mice. Cell-shedding regulators Villin1 and TNFα were downregulated in female mice and male WT mice only, whereas Gelsolin and EGFR increased expression in all mice. Slfn3 expression increased after resection in WT mice, whereas other Slfn family members 1, 2, 5, 8, and 9 had varied expressions that were affected also by sex difference and loss of Slfn3. Differentiation markers sucrase isomaltase, Dpp4, Glut2, and SGLT1 were all decreased, suggesting that enterocytic differentiation effort is incompatible with rapid proliferation shift in intestinal adaptation. Slfn3 absence potentiates villus length and crypt depth, suggesting that the differentiating stimulus of Slfn3 signaling may restrain mucosal mass increase through regulating Villin1, Gelsolin, EGFR, TNFα, and proliferation markers. Therefore, Slfn3 may be an important regulator not only of "normal" enterocytic differentiation but also in response to bowel resection.NEW & NOTEWORTHY The differentiating stimulus of Slfn3 signaling restrains an increase in mucosal mass after bowel resection, and there is a Slfn3-sex interaction regulating differentiation gene expression and intestinal adaptation. This current study highlights the combinatory effects of gender and Slfn3 genotype on the gene expression changes that contribute to the adaptation in intestinal cellular milleu (i.e. villus and crypt structure) which are utilized to compensate for the stress-healing response that the animals display in intestinal adaptation.


Assuntos
Anastomose em-Y de Roux , Proteínas de Ciclo Celular/metabolismo , Animais , Biomarcadores , Proteínas de Ciclo Celular/genética , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Masculino , Camundongos Knockout , RNA/genética , RNA/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores Sexuais , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
2.
PLoS One ; 14(7): e0219267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31260507

RESUMO

Self-renewal and differentiation are essential for intestinal epithelium absorptive functioning and adaptation to pathological states such as short gut syndrome, ulcers, and inflammatory bowel disease. The rodent Slfn3 and its human analog Slfn12 are critical in regulating intestinal epithelial differentiation. We sought to characterize intestinal function in Slfn3 knockout (KO) mice. Male and female pair-fed Slfn3KO mice gained less weight with decreased food efficiency than wild type (WT) mice, with more pronounced effects in females. RNA sequencing performed on intestinal mucosa of Slfn3KO and WT mice showed gene ontology decreases in cell adhesion molecule signaling, tumor necrosis factor receptor binding, and adaptive immune cell proliferation/functioning genes in Slfn3KO mice, with greater effects in females. qPCR analysis of fatty acid metabolism genes, Pla2g4c, Pla2g2f, and Cyp3c55 revealed an increase in Pla2g4c, and a decrease in Pla2g2f in Slfn3KO females. Additionally, adipogenesis genes, Fabp4 and Lpl were decreased and ketogenesis gene Hmgcs2 was increased in female Slfn3KO mice. Sequencing did not reveal significant changes in differentiation markers, so qPCR was utilized. Slfn3KO tended to have decreased expression of intestinal differentiation markers sucrase isomaltase, dipeptidyl peptidase 4, villin 1, and glucose transporter 1 (Glut1) vs. WT males, although these trends did not achieve statistical significance unless data from several markers was pooled. Differentiation markers, Glut2 and sodium-glucose transporter 1 (SGLT1), did show statistically significant sex-dependent differences. Glut2 mRNA was reduced in Slfn3KO females, while SGLT1 increased in Slfn3KO males. Notch2 and Cdx2 were only increased in female Slfn3KO mice. Although Slfn3KO mice gain less weight and decreased food efficiency, their biochemical phenotype is more subtle and suggests a complex interplay between gender effects, Slfn3, and another regulatory pathway yet to be identified that compensates for the chronic loss of Slfn3.


Assuntos
Células Epiteliais/fisiologia , Mucosa Intestinal/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais/fisiologia , Aumento de Peso/fisiologia , Adipogenia/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Ácidos Graxos/metabolismo , Comportamento Alimentar/fisiologia , Feminino , Perfilação da Expressão Gênica , Mucosa Intestinal/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...