Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 45(11): 5234-5243, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269349

RESUMO

PURPOSE: Radiation therapy with ion beams provides a better conformation and effectiveness of the dose delivered to the tumor with respect to photon beams. This implies that a small uncertainty or variation in the crossed tissue shape and density may lead to a more important underdosage of the tumor and/or an overdosage of the surrounding healthy tissue. Although the online control of beam fluence and transverse position is well managed by an appropriate beam delivery system, the online measurement of the longitudinal position of the Bragg peak inside the patient is still an open issue. In this paper we propose a proof-of-concept study of a technique that would allow the online verification of the patient thickness along the beam direction, which could permit detecting a subset of possible range error causes, such as morphological variations. METHODS: The nuclei 12 C and 4 He have the same magnetic rigidity: the two species could be accelerated together in an accelerator and a mixed particle beam delivered to the patient. In the same medium and with the same energy per nucleon, the range of 4 He2+ is about three times the 12 C6+ one. It is, thus, conceivable to achieve a dual goal with a single mixed beam: carbon, stopping into the tumor, is appointed to cure, while helium, emerging from the patient, to control: by detecting and measuring the residual range and position of He, it would be possible to determine the integrated relative stopping power of the patient and prove that it is the expected one. For the detection of helium particles, a plastic scintillator and an optical sensor are proposed. Being helium ions not available at CNAO, the detection system has been characterized using a proton beam. Nevertheless, since the light emitted by a proton is less than the one produced by a helium ion, the helium signal is expected to be more pronounced than the proton one (for the same number of particles). To predict the magnitude of the light signal measured by the sensor, two Monte Carlo models have been setup and validated by measuring the photons per pixel impinging on the sensor. To deal with the many optical issues and to reliably describe the physical process, some corrections have been included into the models. RESULTS: The predictions of both the models are in good agreement with the measurements (within the 20% in terms of absolute photons per pixel). The proposed detection system is able to measure the range of a proton beam with sub-millimetrical precision also in the presence of the background produced by carbon ion fragments and discrepancies in the expected range were detected with a resolution better than 1 mm. CONCLUSIONS: Although many technical issues have still to be addressed for a real implementation in a clinical environment, the preliminary results of this study suggest that a surrogate of real-time verification of the beam range inside the patient during a treatment with carbon ions is possible by adding a small fraction of helium ions to the primary beam.


Assuntos
Radioterapia com Íons Pesados/métodos , Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Fatores de Tempo , Tomografia Computadorizada por Raios X
2.
J Radiat Res ; 54 Suppl 1: i147-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824120

RESUMO

A conceptual design of a mobile isocenter carbon ion gantry was carried out in the framework of the Particle Training Network for European Radiotherapy (PARTNER) and Union of Light Ion Centres in Europe (ULICE) projects. To validate the magnets used in this gantry, Finite Element Method (FEM) simulations were performed with COMSOL multiphysics; the purpose was to evaluate the magnetic field quality and the influence of additional support structures for correctors, 90° bending dipole and quadrupoles, both in dynamic and static regimes. Due to the low ramp rates, the dynamic effects do not disturb the homogeneity and the magnetic field level. The differences between the stationary field and the corresponding dynamic field after the end of the ramps are in the order of 10(-4); it implies that the magnets can be operated without significant field lag at the nominal ramp rate. However, even in static regime the magnetic length of corrector magnet decreases by 5% when the rotator mechanical structure is considered. The simulations suggest an optimization phase of the correctors in the rotator.


Assuntos
Radioterapia com Íons Pesados/instrumentação , Radioterapia com Íons Pesados/métodos , Magnetismo , Neoplasias/radioterapia , Algoritmos , Carbono/química , Simulação por Computador , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Imãs , Aceleradores de Partículas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...