Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 26(18): 14628-35, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20795661

RESUMO

The membrane potential technique was applied to a nanofiltration polyamide membrane to determine its mean pore radius and the dielectric constant of electrolyte solutions inside pores. To our knowledge, this is the first attempt to assess these features from membrane potential measurements. Membrane potential data were analyzed by means of the SEDE (steric electric and dielectric exclusion) transport model. Experiments were conducted with single-salt solutions of NaCl and CaCl(2) and mixed-salt solutions of NaCl and CaCl(2) at various concentrations. It was shown that the pore-size values deduced from the high-concentration limit of the membrane potential measured with the two single-salt solutions are in good agreement. With this parameter being known, the membrane potential measured at high salt concentration with electrolyte mixtures was further used to compute the dielectric constant inside pores. The latter was found to be smaller than its bulk value and to decrease when sodium ions were replaced by calcium ions.

2.
Langmuir ; 24(15): 7955-62, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18616229

RESUMO

The membrane potential arising through nanofiltration membranes separating two aqueous solutions of the same electrolyte at identical hydrostatic pressures but different concentrations is investigated within the scope of the steric, electric, and dielectric exclusion model. The influence of the ion size and the so-called dielectric exclusion on the membrane potential arising through both neutral and electrically charged membranes is investigated. Dielectric phenomena have no influence on the membrane potential through neutral membranes, unlike ion size effects which increase the membrane potential value. For charged membranes, both steric and dielectric effects increase the membrane potential at a given concentration but the diffusion potential (that is the high-concentration limit of the membrane potential) is affected only by steric effects. It is therefore proposed that membrane potential measurements carried out at high salt concentrations could be used to determine the mean pore size of nanofiltration membranes. In practical cases, the membrane volume charge density and the dielectric constant inside pores depend on the physicochemical properties of both the membrane and the surrounding solutions (pH, concentration, and chemical nature of ions). It is shown that the Donnan and dielectric exclusions affect the membrane potential of charged membranes similarly; namely, a higher salt concentration is needed to screen the membrane fixed charge. The membrane volume charge density and the pore dielectric constant cannot then be determined unambiguously by means of membrane potential experiments, and additional independent measurements are in need. It is suggested to carry out rejection rate measurements (together with membrane potential measurements).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...