Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0235223, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754552

RESUMO

Intensive broiler production practices are structured to prevent the introduction and spread of pathogens; however, they can potentially minimize the exposure of broilers to beneficial commensal bacteria. In this study, we used 16S rRNA amplicon sequencing to characterize the cecal microbiota of 35-day-old broilers from 22 independent commercial farms rearing broilers under intensive (IPS) or extensive production systems (EPS). We aimed to determine which bacteria are normal inhabitants of the broiler ceca and which bacteria might be missing from broilers in IPS. In addition, we generated a collection of 410 bacterial isolates, including 87 different species, to be used as a resource to further explore the effects of selected isolates on bird physiology and to elucidate the role of individual species within the cecal microbial community. Our results indicated significant differences in the microbiota of broilers between systems: the microbiota of broilers from EPS was dominated by Bacteroidetes {55.2% ± 8.9 [mean ± standard deviation (SD)]}, whereas Firmicutes dominated the microbiota of broilers from IPS (61.7% ± 14.4, mean ± SD). Bacterial taxa found to be core in the EPS microbiota, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella, were shown to be infrequent or absent from the IPS microbiota, and the EPS microbiota presented higher phylogenetic diversity and greater predicted functional potential than that of broilers in IPS. The bacteria shown to be depleted in broilers from IPS should be further investigated for their effects on bird physiology and potential application as next-generation probiotics. IMPORTANCE Production practices in intensive farming systems significantly reduce the introduction and spread of pathogens; however, they may potentially minimize the exposure of animals to beneficial commensal microorganisms. In this study, we identified core bacteria from the cecal microbiota of broilers raised in extensive production systems that are missing or reduced in birds from intensive systems, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella. Furthermore, the cecal microbiota of broilers from extensive systems showed higher diversity and greater functional potential than that of broilers from intensive systems. In addition, a collection of bacterial isolates containing 87 different species was generated from the current study, and this important resource can be used to further explore the role of selected commensal bacteria on the microbial community and bird physiology.

2.
Appl Environ Microbiol ; 88(24): e0159322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448784

RESUMO

Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or ß-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.


Assuntos
Microbioma Gastrointestinal , Micobioma , Animais , Feminino , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Fungos , RNA Ribossômico 16S/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...