Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 18(1): 142, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986667

RESUMO

BACKGROUND: Switchgrass breeders need to improve the rates of genetic gain in many bioenergy-related traits in order to create improved cultivars that are higher yielding and have optimal biomass composition. One way to achieve this is through genomic selection. However, the heritability of traits needs to be determined as well as the accuracy of prediction in order to determine if efficient selection is possible. RESULTS: Using five distinct switchgrass populations comprised of three lowland, one upland and one hybrid accession, the accuracy of genomic predictions under different cross-validation strategies and prediction methods was investigated. Individual genotypes were collected using GBS while kin-BLUP, partial least squares, sparse partial least squares, and BayesB methods were employed to predict yield, morphological, and NIRS-based compositional data collected in 2012-2013 from a replicated Nebraska field trial. Population structure was assessed by F statistics which ranged from 0.3952 between lowland and upland accessions to 0.0131 among the lowland accessions. Prediction accuracy ranged from 0.57-0.52 for cell wall soluble glucose and fructose respectively, to insignificant for traits with low repeatability. Ratios of heritability across to within-population ranged from 15 to 0.6. CONCLUSIONS: Accuracy was significantly affected by both cross-validation strategy and trait. Accounting for population structure with a cross-validation strategy constrained by accession resulted in accuracies that were 69% lower than apparent accuracies using unconstrained cross-validation. Less accurate genomic selection is anticipated when most of the phenotypic variation exists between populations such as with spring regreening and yield phenotypes.


Assuntos
Metabolismo Energético/genética , Panicum/genética , Característica Quantitativa Herdável , Estudos de Associação Genética , Genética Populacional , Genoma de Planta/genética , Genótipo , Panicum/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Alinhamento de Sequência , Espectroscopia de Luz Próxima ao Infravermelho
2.
Plant Genome ; 8(2): eplantgenome2014.10.0065, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33228324

RESUMO

Switchgrass (Panicum virgatum L.) is a warm-season perennial grass with promising potential as a bioenergy crop in the United States. However, the lack of genomic resources has slowed the development of plant lines with optimal characteristics for sustainable feedstock production. We generated high-density single nucleotide polymorphism (SNP) linkage maps using a reduced-representation sequencing approach by genotyping 231 F1 progeny of a cross between two parents of lowland ecotype from the cultivars Kanlow and Alamo. Over 350 million reads were generated and aligned, which enabled identification and ordering of 4611 high-quality SNPs. The total lengths of the resulting framework maps were 1770 cM for the Kanlow parent and 2059 cM for the Alamo parent. These maps show collinearity with maps generated with polymerase chain reaction (PCR)-based simple-sequence repeat (SSR) markers, and new SNP markers were identified in previously unpopulated regions of the genome. Transmission segregation distortion affected all linkage groups (LGs) to differing degrees, and ordering of distorted markers highlighted several regions of unequal inheritance. Framework maps were adversely affected by the addition of distorted markers with varying severity, but distorted maps were of higher marker density and provided additional information for analysis. Alignment of these linkage maps with a draft version of the switchgrass genome assembly demonstrated high levels of collinearity and provides greater confidence in the validity of both resources. This methodology has proven to be a rapid and cost-effective way to generate high-quality linkage maps of an outcrossing species.

3.
G3 (Bethesda) ; 4(5): 913-23, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24637352

RESUMO

Switchgrass (Panicum virgatum L.), a warm season, C4, perennial grass, is one of the predominant grass species of the North American tall grass prairies. It is viewed as a high-potential bioenergy feedstock species because it can produce large amounts of lignocellulosic material with relatively few inputs. The objectives of this project were to develop an advanced switchgrass population and use it for the construction of genetic linkage maps and trait characterization. A three-generation, four-founder population was created and a total of 182 progeny of this advanced population were genotyped, including a mixture of self-pollinated and hybrid individuals. The female map integrated both subpopulations and covered 1629 cM of the switchgrass genome, with an average map length of 91 cM per linkage group. The male map of the hybrid progeny covered 1462 cM, with an average map length of 81 cM per linkage group. Average marker density of the female and male maps was 3.9 and 3.5 cM per marker interval, respectively. Based on the parental maps, the genome length of switchgrass was estimated to be 1776 cM and 1596 cM for the female map and male map, respectively. The proportion of the genome within 5 cM of a mapped locus was estimated to be 92% and 93% for the female map and male map, respectively. Thus, the linkage maps have covered most of the switchgrass genome. The assessment of marker transmission ratio distortion found that 26% of the genotyped markers were distorted from either 1:1 or 3:1 ratios expected for segregation of single dose markers in one or both parents, respectively. Several regions affected by transmission ratio distortion were found, with linkage groups Ib-m and VIIIa-f most affected.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Panicum/genética , Cromossomos de Plantas , Frequência do Gene , Marcadores Genéticos , Genética Populacional , Tamanho do Genoma , Genoma de Planta , Genótipo , Padrões de Herança , Polimorfismo Genético
4.
PLoS One ; 6(8): e23980, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887356

RESUMO

Switchgrass (Panicum virgatum L.) exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individuals representative of the upland and lowland ecotypes. The results demonstrated a very high degree of conservation in gene content and order with other sequenced plastid genomes. The lowland ecotype reference sequence (Kanlow Lin1) was 139,677 base pairs while the upland sequence (Summer Lin2) was 139,619 base pairs. Alignments between the lowland reference sequence and short-read sequence data from existing sequence datasets identified as either upland or lowland confirmed known polymorphisms and indicated the presence of other differences. Insertions and deletions principally occurred near stretches of homopolymer simple sequence repeats in intergenic regions while most Single Nucleotide Polymorphisms (SNPs) occurred in intergenic regions and introns within the single copy portions of the genome. The polymorphism rate between upland and lowland switchgrass ecotypes was found to be similar to rates reported between chloroplast genomes of indica and japonica subspecies of rice which were believed to have diverged 0.2-0.4 million years ago.


Assuntos
Ecossistema , Ecótipo , Genoma de Cloroplastos/genética , Poaceae/genética , Sequência de Bases , Genes de Plantas , Cinética , Dados de Sequência Molecular , Polimorfismo Genético , Alinhamento de Sequência
5.
Genetics ; 185(3): 745-60, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20407132

RESUMO

Polyploidy is an important aspect of the evolution of flowering plants. The potential of gene copies to diverge and evolve new functions is influenced by meiotic behavior of chromosomes leading to segregation as a single locus or duplicated loci. Switchgrass (Panicum virgatum) linkage maps were constructed using a full-sib population of 238 plants and SSR and STS markers to access the degree of preferential pairing and the structure of the tetraploid genome and as a step toward identification of loci underlying biomass feedstock quality and yield. The male and female framework map lengths were 1645 and 1376 cM with 97% of the genome estimated to be within 10 cM of a mapped marker in both maps. Each map coalesced into 18 linkage groups arranged into nine homeologous pairs. Comparative analysis of each homology group to the diploid sorghum genome identified clear syntenic relationships and collinear tracts. The number of markers with PCR amplicons that mapped across subgenomes was significantly fewer than expected, suggesting substantial subgenome divergence, while both the ratio of coupling to repulsion phase linkages and pattern of marker segregation indicated complete or near complete disomic inheritance. The proportion of transmission ratio distorted markers was relatively low, but the male map was more extensively affected by distorted transmission ratios and multilocus interactions, associated with spurious linkages.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Ligação Genética , Genoma de Planta , Panicum/genética , Poliploidia , DNA de Plantas/genética , Marcadores Genéticos
6.
Plant Cell ; 16(11): 3033-44, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15486100

RESUMO

The phytochrome (phy) family of sensory photoreceptors (phyA to phyE) in Arabidopsis thaliana control plant developmental transitions in response to informational light signals throughout the life cycle. The photoactivated conformer of the photoreceptor Pfr has been shown to translocate into the nucleus where it induces changes in gene expression by an unknown mechanism. Here, we have identified two basic helix-loop-helix (bHLH) transcription factors, designated PHYTOCHROME-INTERACTING FACTOR5 (PIF5) and PIF6, which interact specifically with the Pfr form of phyB. These two factors cluster tightly with PIF3 and two other phy-interacting bHLH proteins in a phylogenetic subfamily within the large Arabidopsis bHLH (AtbHLH) family. We have identified a novel sequence motif (designated the active phytochrome binding [APB] motif) that is conserved in these phy-interacting AtbHLHs but not in other noninteractors. Using the isolated domain and site-directed mutagenesis, we have shown that this motif is both necessary and sufficient for binding to phyB. Transgenic expression of the native APB-containing AtbHLH protein, PIF4, in a pif4 null mutant, rescued the photoresponse defect in this mutant, whereas mutated PIF4 constructs with site-directed substitutions in conserved APB residues did not. These data indicate that the APB motif is necessary for PIF4 function in light-regulated seedling development and suggest that conformer-specific binding of phyB to PIF4 via the APB motif is necessary for this function in vivo. Binding assays with the isolated APB domain detected interaction with phyB, but none of the other four Arabidopsis phys. Collectively, the data suggest that the APB domain provides a phyB-specific recognition module within the AtbHLH family, thereby conferring photoreceptor target specificity on a subset of these transcription factors and, thus, the potential for selective signal channeling to segments of the transcriptional network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequências Hélice-Alça-Hélice/fisiologia , Células Fotorreceptoras/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sítios de Ligação/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Luz , Dados de Sequência Molecular , Mutação/genética , Estimulação Luminosa , Fitocromo B , Ligação Proteica/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...