Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunopharmacol Immunotoxicol ; 44(5): 757-765, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35616237

RESUMO

BACKGROUND: Fentanyl is an analgesic used against pancreatitis-related pain, while whether it ameliorates severe acute pancreatitis (SAP) has yet to be checked. This study aims to determine fentanyl-delivered effect on SAP and the mechanism underlying this effect. METHODS: Rat SAP models were established, following fentanyl treatment. The serum activity of amylase (AMY), lipase (LIP), and diamine oxidase (DAO) was detected by enzyme-linked immunosorbent assay (ELISA). Histological examination was performed in the pancreatic and intestinal tissues with hematoxylin-eosin staining. After transfection with matrix metalloproteinase (MMP) 9 overexpression plasmids, Caco-2 monolayers were treated with fentanyl and subsequently exposed to lipopolysaccharide (LPS). The transepithelial electrical resistance (TEER) value was determined in rat intestinal mucosa through an Ussing chamber assisted by Analyze & Acquire, and in Caco-2 cell monolayers through a voltohmmeter. Intestinal mucosa and paracellular permeabilities were determined by fluorescein isothiocyanate (FITC)-labeled dextran assay. The expressions of ZO-1, Occludin, MMP9, Fas and Fas ligand (FasL) in rat intestinal mucosa and/or Caco-2 monolayers were analyzed by qRT-PCR or/and western blot. RESULTS: Fentanyl alleviated SAP-related histological alterations in the pancreas and intestines, reduced the elevated levels of SAP-related AMY, LIP, and DAO, but promoted the levels of ZO-1 and Occludin. In SAP rats and Caco-2 monolayers, SAP-related or LPS-induced TEER value decreases, permeability increases, and increases in the expressions of MMP9, Fas, and FasL were reversed partly by fentanyl. Notably, MMP9 overexpression could reverse the above fentanyl-delivered in vitro effects. CONCLUSIONS: Fentanyl alleviates intestinal mucosal barrier damage in rats with SAP by inhibiting the MMP9/FasL/Fas pathway.


Assuntos
Amina Oxidase (contendo Cobre) , Pancreatite , Doença Aguda , Amina Oxidase (contendo Cobre)/metabolismo , Amina Oxidase (contendo Cobre)/farmacologia , Amilases/metabolismo , Animais , Células CACO-2 , Dextranos/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Proteína Ligante Fas/metabolismo , Fentanila/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Humanos , Mucosa Intestinal , Lipase/metabolismo , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz , Ocludina/metabolismo , Ocludina/farmacologia , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Ratos
2.
J Surg Res ; 271: 171-179, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34815074

RESUMO

BACKGROUND: Myocardial injury induced by sepsis is the most common cause of death. Topiroxostat has been found to have organ protective effects, but its role in septic shock-related cardiomyocyte damage is still unclear and needs further study. MATERIAL AND METHODS: An endotoxemic shock model in rats was constructed. After topiroxostat treatment, hemodynamic parameters, myocardial injury marker enzymes, oxidative stress, myocardial injury, and apoptosis were measured by polyphysiograph, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, TUNEL staining, and western blot. During in vitro experiments, the effect of topiroxostat on cell vitality, oxidative stress, inflammatory factors, apoptosis-related markers, phosphorylated-p65 (p-p65) and p65 expressions were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and western blot. RESULTS: Topiroxostat improved myocardial dysfunction and superoxide dismutase activity while suppressing levels of creatine kinase, lactate dehydrogenase and malondialdehyde in serum of endotoxemic shock rats. Additionally, topiroxostat augmented dry-wet weight ratios of the hearts in rats. Meanwhile, topiroxostat was proved to alleviate interstitial edema and apoptosis in myocardial tissues of endotoxemic shock rats. During in vitro experiments, topiroxostat pretreatment elevated lipopolysaccharide (LPS)-induced H9c2 cell vitality, and alleviated oxidative stress and inflammation. Moreover, topiroxostat pretreatment downregulated apoptosis-related markers, p-p65, and p-p65/p65 levels in LPS-induced H9c2 cells. CONCLUSIONS: Topiroxostat attenuated LPS-induced myocardial injury via repressing apoptosis and oxidative stress.


Assuntos
Lipopolissacarídeos , Nitrilas , Animais , Apoptose , Lipopolissacarídeos/farmacologia , Nitrilas/farmacologia , Estresse Oxidativo , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...