Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2318274120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127982

RESUMO

Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Separação de Fases , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ritmo Circadiano/genética , Microcorpos/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Mamíferos/metabolismo
2.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961341

RESUMO

Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro or in cells that overexpress protein, the physiological relevance of LLPS is unclear. PERIOD proteins are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Here we show that when transgene was stably expressed, PER2 formed nuclear phosphorylation-dependent LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins is a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian studies.

3.
Cell Chem Biol ; 30(9): 1033-1052, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37708890

RESUMO

Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.


Assuntos
Relógios Circadianos , Animais , Ritmo Circadiano , Mamíferos
4.
Proc Natl Acad Sci U S A ; 117(2): 993-999, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879354

RESUMO

An intimate link exists between circadian clocks and metabolism with nearly every metabolic pathway in the mammalian liver under circadian control. Circadian regulation of metabolism is largely driven by rhythmic transcriptional activation of clock-controlled genes. Among these output genes, Nocturnin (Noct) has one of the highest amplitude rhythms at the mRNA level. The Noct gene encodes a protein (NOC) that is highly conserved with the endonuclease/exonuclease/phosphatase (EEP) domain-containing CCR4 family of deadenylases, but highly purified NOC possesses little or no ribonuclease activity. Here, we show that NOC utilizes the dinucleotide NADP(H) as a substrate, removing the 2' phosphate to generate NAD(H), and is a direct regulator of oxidative stress response through its NADPH 2' phosphatase activity. Furthermore, we describe two isoforms of NOC in the mouse liver. The cytoplasmic form of NOC is constitutively expressed and associates externally with membranes of other organelles, including the endoplasmic reticulum, via N-terminal glycine myristoylation. In contrast, the mitochondrial form of NOC possesses high-amplitude circadian rhythmicity with peak expression level during the early dark phase. These findings suggest that NOC regulates local intracellular concentrations of NADP(H) in a manner that changes over the course of the day.


Assuntos
Ritmo Circadiano/fisiologia , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidases/metabolismo , Estresse Oxidativo/fisiologia , Fatores de Transcrição/metabolismo , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Transcriptoma
5.
iScience ; 19: 83-92, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357170

RESUMO

Fine-tuning of transcriptional responses can be critical for long-term outcomes in response to an environmental challenge. The circadian protein Nocturnin belongs to a family of proteins that include exonucleases, endonucleases, and phosphatases and is most closely related to the CCR4 family of deadenylases that regulate the cellular transcriptome via control of poly(A) tail length of RNA transcripts. In this study, we investigate the role of Nocturnin in regulating the transcriptional response and downstream metabolic adaptations during cold exposure in brown adipose tissue. We find that Nocturnin exhibits dual localization within the cytosol and mitochondria, and loss of Nocturnin causes changes in expression of networks of mRNAs involved in mitochondrial function. Furthermore, Nocturnin-/- animals display significantly elevated levels of tricarboxylic acid cycle intermediates, indicating that they have distinct metabolic adaptations during a prolonged cold exposure. We conclude that cold-induced stimulation of Nocturnin levels can regulate long-term metabolic adaptations to environmental challenges.

6.
Nat Commun ; 9(1): 1138, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556064

RESUMO

Mammalian circadian clocks are driven by a transcription/translation feedback loop composed of positive regulators (CLOCK/BMAL1) and repressors (CRYPTOCHROME 1/2 (CRY1/2) and PER1/2). To understand the structural principles of regulation, we used evolutionary sequence analysis to identify co-evolving residues within the CRY/PHL protein family. Here we report the identification of an ancestral secondary cofactor-binding pocket as an interface in repressive CRYs, mediating regulation through direct interaction with CLOCK and BMAL1. Mutations weakening binding between CLOCK/BMAL1 and CRY1 lead to acceleration of the clock, suggesting that subtle sequence divergences at this site can modulate clock function. Divergence between CRY1 and CRY2 at this site results in distinct periodic output. Weaker interactions between CRY2 and CLOCK/BMAL1 at this pocket are strengthened by co-expression of PER2, suggesting that PER expression limits the length of the repressive phase in CRY2-driven rhythms. Overall, this work provides a model for the mechanism and evolutionary variation of clock regulatory mechanisms.


Assuntos
Criptocromos/genética , Criptocromos/metabolismo , Evolução Molecular , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Sítio Alostérico/genética , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Criptocromos/química , Células HEK293 , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Proteínas Circadianas Period/química , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...