Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 150(5): 1194-1208, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35779666

RESUMO

BACKGROUND: Epicutaneous immunotherapy (EPIT) protocols have recently been developed to restore tolerance in patients with food allergy. The mechanisms by which EPIT protocols promote desensitization rely on a profound immune deviation of pathogenic T- and B-cell responses. OBJECTIVE: To date, little is known about the contribution of skin dendritic cells (skDCs) to T-cell remodeling and EPIT efficacy. METHODS: We capitalized on a preclinical model of food allergy to ovalbumin (OVA) to characterize the phenotype and functions of OVA+ skDCs throughout the course of EPIT. RESULTS: Our results showed that both Langerhans cells and dermal conventional cDC1 and cDC2 subsets retained their ability to capture OVA in the skin and to migrate toward the skin-draining lymph nodes during EPIT. However, their activation/maturation status was significantly impaired, as evidenced by the gradual and selective reduction of CD86, CD40, and OVA protein expression in respective subsets. Phenotypic changes during EPIT were also characterized by a progressive diversification of single-cell gene signatures within each DC subset. Interestingly, we observed that OVA+ Langerhans cells progressively lost their capacity to prime CD4+ TEFF cells, but gained regulatory T-cell stimulatory properties. In contrast, cDC1 were inefficient in priming CD4+ TEFF cells or in reactivating TMEM cells in vitro, whereas cDC2 retained moderate stimulatory properties, and progressively biased type 2 immunity toward type 1 and type 17 responses. CONCLUSIONS: Our results therefore emphasize that the acquisition of distinct phenotypic and functional specializations by skDCs during EPIT is at the cornerstone of the desensitization process.


Assuntos
Hipersensibilidade Alimentar , Células de Langerhans , Humanos , Dessensibilização Imunológica/métodos , Ovalbumina , Linfócitos T Reguladores , Alérgenos
2.
J Allergy Clin Immunol ; 143(6): 2147-2157.e9, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30654051

RESUMO

BACKGROUND: Tissue-resident memory T (Trm) cells are detrimental in patients with numerous chronic inflammatory diseases, including allergic contact dermatitis (ACD). OBJECTIVES: We sought to analyze the contribution of Trm cells to the chronicity and severity of ACD and to define the local parameters regulating their development and functions. METHODS: We used an experimental model of ACD (ie, contact hypersensitivity to 2,4-dinitrofluorobenzene) that is mediated by CD8+ T cells. RESULTS: Our data show that early effector T cells accumulated in the skin during the acute contact hypersensitivity reaction and gave rise to epidermal CD8+ Trm cells expressing a specific set of inhibitory checkpoint receptors (ICRs), such as programmed cell death protein 1 (PD-1) and T cell immunoglobulin and mucin domain 3 (TIM-3). Those Trm cells remained in the epidermis for several weeks and mediated the eczema exacerbations, which developed on allergen re-exposure without the contribution of circulating specific T cells. Furthermore, allergen-induced Trm cell reactivation was constrained because treatment with ICR antagonists dramatically enhanced the magnitude and severity of eczema exacerbations. Finally, we show that the persistence of the allergen in the epidermis for long periods of time was responsible for both the development and maintenance of epidermal Trm cells, as well as the sustained expression of ICRs. CONCLUSION: Although CD8+ Trm cells are key for the pathophysiology of ACD, intrinsic mechanisms control their reactivation to prevent damaging immunopathology. Developing strategies targeting the reactivation of skin Trm cells in situ through their ICRs should open new perspectives for the treatment of ACD.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Dermatite Alérgica de Contato/imunologia , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Memória Imunológica , Receptor de Morte Celular Programada 1/imunologia , Pele/imunologia , Alérgenos , Animais , Células Cultivadas , Dinitrofluorbenzeno , Feminino , Camundongos Endogâmicos C57BL , Oxazolona , Índice de Gravidade de Doença
3.
Front Immunol ; 9: 1951, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233572

RESUMO

The skin is a major immunologic organ that may induce protection, sensitization or tolerance. Epicutaneous immunotherapy (EPIT) has been proposed as an attractive strategy to actively treat food allergy and has been shown to induce tolerance in sensitized mice through the induction of Foxp3+ regulatory T cells (Tregs), especially CD62L+ Tregs. Among immune cells in the skin, dendritic cells are key players in antigen-specific immune activation or regulation. The role of different populations of skin DCs in tolerance induction remains to be elucidated. Using OVA-sensitized BALB/c mice, we demonstrated that the application of a patch containing OVA-A647 to the skin resulted in allergen uptake by Langerhans cells (LCs) and CD11b+ dermal cDC2 and subsequent migration into skin draining lymph nodes. These 2 populations induced Foxp3 expression in CD4+ cells in vitro. Only LCs induced LAP+ cells and CD62L+ Tregs. Using Langerin-eGFP-DTR mice, we analyzed the role of LCs in the mechanisms of tolerance induction by EPIT in vivo. Following complete depletion of LCs, a dramatic decrease in the number of OVA+ DCs and OVA+ CD11b+ dermal cDC2 was observed in skin draining lymph nodes 48 h after epicutaneous application. Likewise, 2 weeks of EPIT in non-depleted mice induced Foxp3+ Tregs, especially CD62L+, and LAP+ Tregs in skin draining lymph nodes and spleen, whereas no induction of Tregs was observed in LC-depleted mice. Following 8 weeks of treatment, EPIT-treated mice showed significant protection against anaphylaxis accompanied by a significant increase of Foxp3+ Tregs, especially CD62L+ Tregs, which was not seen in the absence of LCs. In summary, although both LCs and CD11b+ dermal cDC2s could induce regulatory T cells, the absence of LCs during EPIT impaired treatment efficacy, indicating their crucial role in skin-induced tolerance.


Assuntos
Alérgenos/imunologia , Apresentação de Antígeno , Dessensibilização Imunológica , Hipersensibilidade/terapia , Células de Langerhans/imunologia , Pele/imunologia , Linfócitos T Reguladores/imunologia , Animais , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Células de Langerhans/patologia , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Ovalbumina/imunologia , Pele/patologia , Linfócitos T Reguladores/patologia
4.
Front Med (Lausanne) ; 5: 166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900173

RESUMO

The human skin is known to be inhabited by diverse microbes, including bacteria, fungi, viruses, archaea, and mites. This microbiome exerts a protective role against infections by promoting immune development and inhibiting pathogenic microbes to colonize skin. One of the factors having an intense effect on the skin and its resident microbes is ultraviolet-radiation (UV-R). UV-R can promote or inhibit the growth of microbes on the skin and modulate the immune system which can be either favorable or harmful. Among potential UV-R targets, skin resident memory T cells (TRM) stand as well positioned immune cells at the forefront within the skin. Both CD4+ or CD8+ αß TRM cells residing permanently in peripheral tissues have been shown to play prominent roles in providing accelerated and long-lived specific immunity, tissue homeostasis, wound repair. Nevertheless, their response upon UV-R exposure or signals from microbiome are poorly understood compared to resident TCRγδ cells. Skin TRM survive for long periods of time and are exposed to innumerable antigens during lifetime. The interplay of TRM with skin residing microbes may be crucial in pathophysiology of various diseases including psoriasis, atopic dermatitis and polymorphic light eruption. In this article, we share our perspective about how UV-R may directly shape the persistence, phenotype, specificity, and function of skin TRM; and moreover, whether UV-R alters barrier function, leading to microbial-specific skin TRM, disrupting the healthy balance between skin microbiome and skin immune cells, and resulting in chronic inflammation and diseased skin.

5.
J Pathol ; 242(2): 234-245, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28191908

RESUMO

Atopic dermatitis (AD) is a common skin inflammatory disease characterized by the production of thymic stromal lymphopoietin (TSLP) and marked TH 2 polarization. Recent studies suggest that IL-1ß contributes to the development of AD skin inflammation. Here, we have investigated the impact of IL-1ß signalling on the epidermal homeostasis of both healthy subjects and AD patients [with functional filaggrin (FLG) alleles], with particular attention to TSLP production and keratinocyte differentiation. In healthy reconstructed human epidermis (RHE), IL-1ß promoted (i) robust secretion of TSLP in an NF-κB-dependent manner and (ii) a significant decrease in the expression of filaggrin and other proteins of the epidermal differentiation complex. These effects were prevented by treatment of RHE with the anti-IL-1ß mAb canakinumab and by the IL-1 receptor antagonist anakinra. Interestingly, RHE generated from AD donors behaved like that of healthy individuals and showed comparable responses to IL-1ß signals. Collectively, our results suggest that IL-1ß may be an early key mediator for the acquisition of an AD phenotype through induction of TSLP and alteration of the epidermal homeostasis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Citocinas/genética , Dermatite Atópica/genética , Interleucina-1beta/genética , Adulto , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Diferenciação Celular , Citocinas/metabolismo , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Epiderme/metabolismo , Epiderme/patologia , Feminino , Proteínas Filagrinas , Homeostase , Humanos , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo , Adulto Jovem , Linfopoietina do Estroma do Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...