Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Robot ; 9(89): eadi9762, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630805

RESUMO

Caves and lava tubes on the Moon and Mars are sites of geological and astrobiological interest but consist of terrain that is inaccessible with traditional robot locomotion. To support the exploration of these sites, we present ReachBot, a robot that uses extendable booms as appendages to manipulate itself with respect to irregular rock surfaces. The booms terminate in grippers equipped with microspines and provide ReachBot with a large workspace, allowing it to achieve force closure in enclosed spaces, such as the walls of a lava tube. To propel ReachBot, we present a contact-before-motion planner for nongaited legged locomotion that uses internal force control, similar to a multifingered hand, to keep its long, slender booms in tension. Motion planning also depends on finding and executing secure grips on rock features. We used a Monte Carlo simulation to inform gripper design and predict grasp strength and variability. In addition, we used a two-step perception system to identify possible grasp locations. To validate our approach and mechanisms under realistic conditions, we deployed a single ReachBot arm and gripper in a lava tube in the Mojave Desert. The field test confirmed that ReachBot will find many targets for secure grasps with the proposed kinematic design.

2.
Nat Commun ; 15(1): 1968, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438390

RESUMO

Stabilization of riverbanks by vegetation has long been considered necessary to sustain single-thread meandering rivers. However, observation of active meandering in modern barren landscapes challenges this assumption. Here, we investigate a globally distributed set of modern meandering rivers with varying riparian vegetation densities, using satellite imagery and statistical analyses of meander-form descriptors and migration rates. We show that vegetation enhances the coefficient of proportionality between channel curvature and migration rates at low curvatures, and that this effect wanes in curvier channels irrespective of vegetation density. By stabilizing low-curvature reaches and allowing meanders to gain sinuosity as channels migrate laterally, vegetation quantifiably affects river morphodynamics. Any causality between denser vegetation and higher meander sinuosity, however, cannot be inferred owing to more frequent avulsions in modern non-vegetated environments. By illustrating how vegetation affects channel mobility and floodplain reworking, our findings have implications for assessing carbon stocks and fluxes in river floodplains.

3.
Nat Commun ; 13(1): 7156, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418350

RESUMO

Sand mobilized by wind forms decimeter-scale impact ripples and decameter-scale or larger dunes on Earth and Mars. In addition to those two bedform scales, orbital and in situ images revealed a third distinct class of larger meter-scale ripples on Mars. Since their discovery, two main hypotheses have been proposed to explain the formation of large martian ripples-that they originate from the growth in wavelength and height of decimeter-scale ripples or that they arise from the same hydrodynamic instability as windblown dunes or subaqueous bedforms instead. Here we provide evidence that large martian ripples form from the same hydrodynamic instability as windblown dunes and subaqueous ripples. Using an artificial neural network, we characterize the morphometrics of over a million isolated barchan dunes on Mars and analyze how their size and shape vary across Mars' surface. We find that the size of Mars' smallest dunes decreases with increasing atmospheric density with a power-law exponent predicted by hydrodynamic theory, similarly to meter-size ripples, tightly bounding a forbidden range in bedform sizes. Our results provide key evidence for a unifying model for the formation of subaqueous and windblown bedforms on planetary surfaces, offering a new quantitative tool to decipher Mars' atmospheric evolution.


Assuntos
Marte , Meio Ambiente Extraterreno , Planeta Terra , Hidrodinâmica , Redes Neurais de Computação
4.
Geophys Res Lett ; 49(8): e2021GL097605, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860461

RESUMO

Titan is a sedimentary world, with lakes, rivers, canyons, fans, dissected plateaux, and sand dunes. Sediments on Saturn's moon are thought to largely consist of mechanically weak organic grains, prone to rapid abrasion into dust. Yet, Titan's equatorial dunes have likely been active for 10s-100s kyr. Sustaining Titan's dunes over geologic timescales requires a mechanism that produces sand-sized particles at equatorial latitudes. We explore the hypothesis that a combination of abrasion, when grains are transported by winds or methane rivers, and sintering, when they are at rest, could produce sand grains that maintain an equilibrium size. Our model demonstrates that seasonal sediment transport may produce sand under Titan's surface conditions and could explain the latitudinal zonation of Titan's landscapes. Our findings support the hypothesis of global, source-to-sink sedimentary pathways on Titan, driven by seasons, and mediated by episodic abrasion and sintering of organic sand by rivers and winds.

5.
Nature ; 492(7427): 100-3, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23222614

RESUMO

Branching river networks are one of the most widespread and recognizable features of Earth's landscapes and have also been discovered elsewhere in the Solar System. But the mechanisms that create these patterns and control their spatial scales are poorly understood. Theories based on probability or optimality have proven useful, but do not explain how river networks develop over time through erosion and sediment transport. Here we show that branching at the uppermost reaches of river networks is rooted in two coupled instabilities: first, valleys widen at the expense of their smaller neighbours, and second, side slopes of the widening valleys become susceptible to channel incision. Each instability occurs at a critical ratio of the characteristic timescales for soil transport and channel incision. Measurements from two field sites demonstrate that our theory correctly predicts the size of the smallest valleys with tributaries. We also show that the dominant control on the scale of landscape dissection in these sites is the strength of channel incision, which correlates with aridity and rock weakness, rather than the strength of soil transport. These results imply that the fine-scale structure of branching river networks is an organized signature of erosional mechanics, not a consequence of random topology.


Assuntos
Rios , Animais , Sedimentos Geológicos/análise , Geologia , Modelos Teóricos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...