Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 7(11): e1002318, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072959

RESUMO

EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Hidrolases de Éster Carboxílico/metabolismo , Carmovirus/imunologia , Proteínas de Ligação a DNA/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Sequência de Aminoácidos , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Bactérias , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/virologia , Proteínas de Plantas/biossíntese , Ligação Proteica , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Estrutura Quaternária de Proteína , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Transdução de Sinais
2.
Cell Host Microbe ; 5(2): 151-65, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19218086

RESUMO

Systemic acquired resistance (SAR), initiated by a plant upon recognition of microbial effectors, involves generation of a mobile signal at the primary infection site, which translocates to and activates defense responses in distal tissues via unknown mechanism(s). We find that an acyl carrier protein, ACP4, is required to perceive the mobile SAR signal in distal tissues of Arabidopsis. Although acp4 plants generated the mobile signal, they failed to induce the systemic immunity response. Defective SAR in acp4 plants was not due to impairment in salicylic acid (SA)-, methyl SA-, or jasmonic acid-mediated plant hormone signaling pathways but was associated with the impaired cuticle of acp4 leaves. Other cuticle-impairing genetic mutations or physical removal of the cuticle also compromised SAR. This cuticular requirement was relevant only during mobile signal generation and its translocation to distal tissues. Collectively, these data suggest an active role for the plant cuticle in SAR-related molecular signaling.


Assuntos
Arabidopsis/imunologia , Infecções Bacterianas/imunologia , Doenças das Plantas/imunologia , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
3.
Plant Mol Biol ; 63(2): 257-71, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17072561

RESUMO

In plants, changes in the levels of oleic acid (18:1), a major monounsaturated fatty acid (FA), results in the alteration of salicylic acid (SA)- and jasmonic acid (JA)-mediated defense responses. This is evident in the Arabidopsis ssi2/fab2 mutant, which encodes a defective stearoyl-acyl carrier protein-desaturase (S-ACP-DES) and consequently accumulates high levels of stearic acid (18:0) and low levels of 18:1. In addition to SSI2, the Arabidopsis genome encodes six S-ACP-DES-like enzymes, the native expression levels of which are unable to compensate for a loss-of-function mutation in ssi2. The presence of low levels of 18:1 in the fab2 null mutant indicates that one or more S-ACP-DES isozymes contribute to the 18:1 pool. Biochemical assays show that in addition to SSI2, four other isozymes are capable of desaturating 18:0-ACP but with greatly reduced specific activities, which likely explains the inability of these SSI2 isozymes to substitute for a defective ssi2. Lines containing T-DNA insertions in S-ACP-DES1 and S-ACP-DES4 show that they are altered in their lipid profile but contain normal 18:1 levels. However, overexpression of the S-ACP-DES1 isoform in ssi2 plants results in restoration of 18:1 levels and thereby rescues all ssi2-associated phenotypes. Thus, high expression of a low specific activity S-ACP-DES is required to compensate for a mutation in ssi2. Transcript level of S-ACP-DES isoforms is reduced in high 18:1-containing plants. Enzyme activities of the desaturase isoforms in a 5-fold excess of 18:1-ACP show product inhibition of up to 73%. Together these data indicate that 18:1 levels are regulated at both transcriptional and post-translational levels.


Assuntos
Arabidopsis/enzimologia , Isoenzimas/metabolismo , Oxigenases de Função Mista/metabolismo , Ácido Oleico/biossíntese , Folhas de Planta/enzimologia , Arabidopsis/metabolismo
4.
Plant Physiol ; 139(4): 1717-35, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306139

RESUMO

Stearoyl-acyl carrier protein desaturase-mediated conversion of stearic acid to oleic acid (18:1) is the key step that regulates the levels of unsaturated fatty acids (FAs) in cells. Our previous work with the Arabidopsis (Arabidopsis thaliana) ssi2/fab2 mutant and its suppressors demonstrated that a balance between glycerol-3-phosphate (G3P) and 18:1 levels is critical for the regulation of salicylic acid (SA)- and jasmonic acid-mediated defense signaling in the plant. In this study, we have evaluated the role of various genes that have an impact on SA, resistance gene-mediated, or FA desaturation (FAD) pathways on ssi2-mediated signaling. We show that ssi2-triggered resistance is dependent on EDS1, PAD4, EDS5, SID2, and FAD7 FAD8 genes. However, ssi2-triggered defects in the jasmonic acid pathway, morphology, and cell death phenotypes are independent of the EDS1, EDS5, PAD4, NDR1, SID2, FAD3, FAD4, FAD5, DGD1, FAD7, and FAD7 FAD8 genes. Furthermore, the act1-mediated rescue of ssi2 phenotypes is also independent of the FAD2, FAD3, FAD4, FAD5, FAD7, and DGD1 genes. Since exogenous application of glycerol converts wild-type plants into ssi2 mimics, we also studied the effect of exogenous application of glycerol on mutants impaired in resistance-gene signaling, SA, or fad pathways. Glycerol increased SA levels and induced pathogenesis-related gene expression in all but sid2, nahG, fad7, and fad7 fad8 plants. Furthermore, glycerol-induced phenotypes in various mutant lines correlate with a concomitant reduction in 18:1 levels. Inability to convert glycerol into G3P due to a mutation in the nho1-encoded glycerol kinase renders plants tolerant to glycerol and unable to induce the SA-dependent pathway. A reduction in the NHO1-derived G3P pool also results in a partial age-dependent rescue of the ssi2 morphological and cell death phenotypes in the ssi2 nho1 plants. The glycerol-mediated induction of defense was not associated with any major changes in the lipid profile and/or levels of phosphatidic acid. Taken together, our results suggest that glycerol application and the ssi2 mutation in various mutant backgrounds produce similar effects and that restoration of ssi2 phenotypes is not associated with the further desaturation of 18:1 to linoleic or linolenic acids in plastidal or extraplastidal lipids.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Graxos Dessaturases/genética , Genes de Plantas , Glicerol/metabolismo , Glicerol/farmacologia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Mutação , Fenótipo , Ácidos Fosfatídicos/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais/genética
5.
Proc Natl Acad Sci U S A ; 101(14): 5152-7, 2004 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15044700

RESUMO

Stearoyl-acyl-carrier-protein-desaturase-mediated conversion of stearic acid (18:0) to oleic acid (18:1) is a key step, which regulates levels of unsaturated fatty acids in cells. We previously showed that stearoyl-acyl-carrier-protein-desaturase mutants ssi2/fab2 carrying a loss-of-function mutation in the plastidial glycerol-3-phosphate (G3P) acyltransferase (act1) have elevated 18:1 levels and are restored in their altered defense signaling. Because G3P is required for the acylation of 18:1 by G3P acyltransferase, it was predicted that reduction of G3P levels should increase 18:1 levels and thereby revert ssi2-triggered phenotypes. Here we show that a mutation in G3P dehydrogenase restores both salicylic acid- and jasmonic acid-mediated phenotypes of ssi2 plants. The G3P dehydrogenase gene was identified by map-based cloning of the ssi2 suppressor mutant rdc8 (gly1-3) and confirmed by epistatic analysis of ssi2 with gly1-1. Restoration of ssi2-triggered phenotypes by the gly1-3 mutation was age-dependent and correlated with the levels of 18:1. Regeneration of G3P pools by glycerol application in ssi2 and ssi2 gly1-3 plants caused a marked reduction in the 18:1 levels, which rendered these plants hypersensitive to glycerol. This hypersensitivity in ssi2 was rescued by the act1 mutation. Furthermore, overexpression of the ACT1 gene resulted in enhanced sensitivity to glycerol. Glycerol application also lowered the 18:1 content in SSI2 plants and converted these into ssi2-mimics. Our results show that 18:1 levels in plastids are regulated by means of acylation with G3P, and a balance between G3P and 18:1 is critical for the regulation of salicylic acid- and jasmonic acid-mediated signaling pathways.


Assuntos
Arabidopsis/genética , Metabolismo dos Lipídeos , Ácidos Oleicos/metabolismo , Alelos , Arabidopsis/metabolismo , Sequência de Bases , Northern Blotting , Primers do DNA , Mutação , Transdução de Sinais
6.
Plant Cell ; 15(12): 2952-65, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14615603

RESUMO

A mutation in the Arabidopsis gene ssi2/fab2, which encodes stearoyl-acyl carrier protein desaturase (S-ACP-DES), results in the reduction of oleic acid (18:1) levels in the mutant plants and also leads to the constitutive activation of NPR1-dependent and -independent defense responses. By contrast, ssi2 plants are compromised in the induction of the jasmonic acid (JA)-responsive gene PDF1.2 and in resistance to the necrotrophic pathogen Botrytis cinerea. Although S-ACP-DES catalyzes the initial desaturation step required for JA biosynthesis, a mutation in ssi2 does not alter the levels of the JA precursor linolenic acid (18:3), the perception of JA or ethylene, or the induced endogenous levels of JA. This finding led us to postulate that the S-ACP-DES-derived fatty acid (FA) 18:1 or its derivative is required for the activation of certain JA-mediated responses and the repression of the salicylic acid (SA) signaling pathway. Here, we report that alteration of the prokaryotic FA signaling pathway in plastids, leading to increased levels of 18:1, is required for the rescue of ssi2-triggered phenotypes. 18:1 levels in ssi2 plants were increased by performing epistatic analyses between ssi2 and several mutants in FA pathways that cause an increase in the levels of 18:1 in specific compartments of the cell. A loss-of-function mutation in the soluble chloroplastic enzyme glycerol-3-phosphate acyltransferase (ACT1) completely reverses SA- and JA-mediated phenotypes in ssi2. In contrast to the act1 mutation, a loss-of-function mutation in the endoplasmic reticulum-localized omega6 oleate desaturase (FAD2) does not alter SA- or JA-related phenotypes of ssi2. However, a mutation in the plastidial membrane-localized omega6 desaturase (FAD6) mediates a partial rescue of ssi2-mediated phenotypes. Although ssi2 fad6 plants are rescued in their morphological phenotypes, including larger size, absence of visible lesions, and straight leaves, these plants continue to exhibit microscopic cell death and express the PR-1 gene constitutively. In addition, these plants are unable to induce the expression of PDF1.2 in response to the exogenous application of JA. Because the act1 mutation rescues all of these phenotypes in ssi2 fad6 act1 triple-mutant plants, act1-mediated reversion may be mediated largely by an increase in the free 18:1 content within the chloroplasts. The reversion of JA responsiveness in ssi2 act1 plants is abolished in the ssi2 act1 coi1 triple-mutant background, suggesting that both JA- and act1-generated signals are required for the expression of the JA-inducible PDF1.2 gene. Our conclusion that FA signaling in plastids plays an essential role in the regulation of SSI2-mediated defense signaling is further substantiated by the fact that overexpression of the N-terminal-deleted SSI2, which lacks the putative plastid-localizing transit peptide, is unable to rescue ssi2-triggered phenotypes, as opposed to overexpression of the full-length protein.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/biossíntese , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais/fisiologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Botrytis/crescimento & desenvolvimento , Cloroplastos/genética , Cloroplastos/metabolismo , Ciclopentanos/farmacologia , Defensinas/genética , Defensinas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Etilenos/farmacologia , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Imunidade Inata/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Oxilipinas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica/efeitos dos fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Regulação para Cima
7.
Mol Plant Microbe Interact ; 16(11): 1022-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14601670

RESUMO

The Arabidopsis mutants ssi2 and fab2 are defective in stearoyl ACP desaturase, which causes altered salicylic acid (SA)- and jasmonic acid (JA)-mediated defense signaling. Both ssi2 and fab2 plants show spontaneous cell death, express PR genes constitutively, accumulate high levels of SA, and exhibit enhanced resistance to bacterial and oomycete pathogens. In contrast to constitutive activation of the SA pathway, ssi2 and fab2 plants are repressed in JA-mediated induction of the PDF1.2 gene, which suggests that the SSI2-mediated signaling pathway modulates cross talk between the SA and JA pathways. In this study, we have characterized two recessive nonallelic mutants in the ssi2 background, designated as rdc (restorer of defective cross talk) 2 and rdc8. Both ssi2 rdc mutants are suppressed in constitutive SA signaling, show basal level expression of PR-1 gene, and induce high levels of PDF1.2 in response to exogenous application of JA. Interestingly, while the rdc8 mutation completely abolishes spontaneous cell death in ssi2 rdc8 plants, the ssi2 rdc2 plants continue to show some albeit reduced cell death. Fatty acid (FA) analysis showed a reduction in 16:3 levels in ssi2 rdc8 plants, which suggests that this mutation may limit the flux of FAs into the prokaryotic pathway of glycerolipid biosynthesis. Both rdc2 and rdc8 continue to accumulate high levels of 18:0, which suggests that 18:0 levels were responsible for neither constitutive SA signaling nor repression of JA-induced expression of the PDF1.2 gene in ssi2 plants. We also analyzed SA and JA responses of the fab2-derived shs1 mutant, which accumulates levels of 18:0 over 50% lower than those in the fab2 plants. Even though fab2 shs1 plants were morphologically bigger than fab2 plants, they expressed PR genes constitutively, showed HR-like cell death, and accumulated elevated levels of SA. However, unlike the ssi2 rdc plants, fab2 shs1 plants were unable to induce high levels of PDF1.2 expression in response to exogenous application of JA. Together, these results show that defective cross talk in ssi2 can be restored by second site mutations and is independent of morphological size of the plants, cell death, and elevated levels of 18:0.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/microbiologia , Oxilipinas , Doenças das Plantas/microbiologia , Folhas de Planta/fisiologia , Pseudomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...