Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 623: 723-734, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35605451

RESUMO

HYPOTHESIS: Self-assembling molecular structures responding to light stimulus are appealing for applications as sensing and drug delivery. Supramolecular nanotubes have a relevant potential in nanotechnology as they can be used to encapsulate different loads like drugs, biological macromolecules, and nanomaterials. In addition, they are suitable elements for novel supracolloidal materials. Structural responses of supramolecular nanotubes to non-invasive stimuli are very much desired to enable controlled release of the encapsulated guests and to provide these recently developed new materials with an external trigger. Here, we describe the formation of well-defined, single wall tubules that interconvert into twisted ribbons upon UV-light exposure in aqueous environment. The structures are provided by self-assembly of an azobenzene substituted cholic acid, a biological surfactant belonging to the family of bile acids. The azobenzene group allows for the light responsiveness of the molecular packing. Concurrently the steroidal moieties assure both chiral features and extensive hydrophobic interactions for time and temperature resistant aggregates. EXPERIMENTS: The molecular packing interconversion was followed by circular dichroism. Microscopy, small angle X-ray scattering and light scattering measurements demonstrated the drastic morphological variation upon irradiation. A model of the molecular arrangement within the tubular walls was suggested based on the circular dichroism spectra simulation. FINDINGS: Innovatively, the molecular design reported in our work allows for encoding in the same light responsive system multiple desirable features (e.g. bio-origin, temperature resistance and chirality of the aggregates). Such combination of properties, never reported before for a single molecule, might be relevant for the realization of robust, stimuli-responsive bio-vectors.


Assuntos
Nanoestruturas , Nanotubos , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Nanotecnologia , Nanotubos/química
2.
Entropy (Basel) ; 24(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35205486

RESUMO

The vapor pressures of six solid 5-X-1,10-phenanthrolines (where X = Cl, CH3, CN, OCH3, NH2, NO2) were determined in suitable temperature ranges by Knudsen Effusion Mass Loss (KEML). From the temperature dependencies of vapor pressure, the molar sublimation enthalpies, ΔcrgHm0(⟨T⟩), were calculated at the corresponding average ⟨T⟩ of the explored temperature ranges. Since to the best of our knowledge no thermochemical data seem to be available in the literature regarding these compounds, the ΔcrgHm0(⟨T⟩) values obtained by KEML experiments were adjusted to 298.15 K using a well known empirical procedure reported in the literature. The standard (p0 = 0.1 MPa) molar sublimation enthalpies, ΔcrgHm0(298.15 K), were compared with those determined using a recently proposed solution calorimetry approach, which was validated using a remarkable amount of thermochemical data of molecular compounds. For this purpose, solution enthalpies at infinite dilution of the studied 5-chloro and 5-methylphenantrolines in benzene were measured at 298.15 K. Good agreement was found between the values derived by the two different approaches, and final mean values of ΔcrgHm0(298.15 K) were recommended. Finally, the standard molar entropies and Gibbs energies of sublimation were also derived at T = 298.15 K. The volatilities of the six compounds were found to vary over a range of three orders of magnitude in the explored temperature range. The large difference in volatility was analyzed in the light of enthalpies and entropies of sublimation. The latter was tentatively put in relation to the rotational contribution of the substituent group on the phenanthroline unit.

3.
ACS Omega ; 6(40): 26428-26438, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661000

RESUMO

A kinetic analysis of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the iron(IV)-oxo complex [(N4Py)FeIV(O)]2+ and to the phthalimide N-oxyl radical (PINO) has been carried out. The results indicate that a higher activating effect of α-heteroatoms toward the HAT from C-H bonds is observed with the more electrophilic PINO radical. When the N-hydroxy precursor of PINO, N-hydroxyphthalimide (NHPI), is used as a HAT mediator in the oxidation promoted by [(N4Py)FeIV(O)]2+, significant differences in terms of selectivity have been found. Product studies of the competitive oxidations of primary and secondary aliphatic alcohols (1-decanol, cyclopentanol, and cyclohexanol) with alkylaromatics (ethylbenzene and diphenylmethane) demonstrated that it is possible to modify the selectivity of the oxidations promoted by [(N4Py)FeIV(O)]2+ in the presence of NHPI. In fact, alkylaromatic substrates are more reactive in the absence of the mediator while alcohols are preferably oxidized in the presence of NHPI.

4.
Inorg Chem ; 60(14): 10674-10685, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34236168

RESUMO

A thorough structural characterization of the La(NO3)3 salt dissolved into several mixtures of ethyl ammonium nitrate (EAN) and methanol (MeOH) with EAN molar fraction χEAN ranging from 0 to 1 has been carried out by combining molecular dynamics (MD) and X-ray absorption spectroscopy (XAS). The XAS and MD results show that changes take place in the La3+ first solvation shell when moving from pure MeOH to pure EAN. With increasing the ionic liquid content of the mixture, the La3+ first-shell complex progressively loses MeOH molecules to accommodate more and more nitrate anions. Except in pure EAN, the La3+ ion is always able to coordinate both MeOH and nitrate anions, with a ratio between the two ligands that changes continuously in the entire concentration range. When moving from pure MeOH to pure EAN, the La3+ first solvation shell passes from a 10-fold bicapped square antiprism geometry where all the nitrate anions act only as monodentate ligands to a 12-coordinated icosahedral structure in pure EAN where the nitrate anions bind the La3+ cation both in mono- and bidentate modes. The La3+ solvation structure formed in the MeOH/EAN mixtures shows a great adaptability to changes in the composition, allowing the system to reach the ideal compromise among all of the different interactions that take place into it.

5.
J Phys Chem B ; 125(24): 6639-6648, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34109780

RESUMO

Molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) have been combined to study the coordination of the Co2+ and Ni2+ ions in ionic liquids (ILs) based on the bis(trifluoromethylsulfonyl)imide ([Tf2N]-) anion and having different organic cations, namely, 1-butyl-3-methylimidazolium ([C4mim]+), 1,8-bis(3-methylimidazolium-1-yl)octane ([C8(mim)2]2+), N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium ([choline]+), and butyltrimethylammonium ([BTMA]+). Co and Ni K-edge XAS data have been collected on 0.1 mol L-1 Co(Tf2N)2 and Ni(Tf2N)2 solutions and on the metallic salts. MD simulations have been carried out to obtain structural information on the metal ion coordination. The analysis of the extended X-ray absorption fine structure (EXAFS) spectra of the solutions has been carried out based on the atomistic description provided by MD, and the studied ILs have been found to be able to dissolve both the Co(Tf2N)2 and Ni(Tf2N)2 salts giving rise to a different structural arrangement around the metal ions as compared to the solid state. The combined EXAFS and MD results showed that the Co2+ and Ni2+ ions are surrounded by a first solvation shell formed by six [Tf2N]- anions, each coordinating in a monodentate fashion by means of the oxygen atoms. The nature of the IL organic cation has little or no influence on the overall spatial arrangement of the [Tf2N]- anions, so that stable octahedral complexes of the type [M(Tf2N)6]4- (M = Co, Ni) have been observed in all the investigated ILs.

6.
Photochem Photobiol ; 97(6): 1310-1321, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33998681

RESUMO

A kinetic and product study of the 3-cyano-N-methyl-quinolinium photoinduced monoelectronic oxidation of a series of ß-hydroxysulfoxides has been carried out to investigate the competition between Cα -S and Cα -Cß bond cleavage within the corresponding cation radicals. Laser flash photolysis experiments unequivocally established the formation of sulfoxide cation radicals showing their absorption band (λ max ≈ 520 nm) and that of 3-CN-NMQ• (λ max ≈ 390 nm). Steady-state photolysis experiments suggest that, in contrast to what previously observed for alkyl phenyl sulfoxide cation radicals that exclusively undergo Cα -S bond cleavage, the presence of a ß-hydroxy group makes, in some cases, the Cα -Cß scission competitive. The factors governing this competition seem to depend on the relative stability of the fragments formed from the two bond scissions. Substitution of the ß-OH group with -OMe did not dramatically change the reactivity pattern of the cation radicals thus suggesting that the observed favorable effect of the hydroxy group on the Cα -Cß bond cleavage mainly resides on its capability to stabilize the carbocation formed upon this scission.


Assuntos
Elétrons , Cátions/química , Radicais Livres/química , Estrutura Molecular , Oxirredução
7.
Phys Chem Chem Phys ; 22(36): 20434-20443, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32915187

RESUMO

A synergic approach combining molecular dynamics (MD) and X-ray absorption spectroscopy (XAS) has been used to investigate the structural properties of the La(Tf2N)3 salt (where Tf2N = bistriflimide or bis(trifluoromethansulfonyl)imide) dissolved into several mixtures of acetonitrile and the 1,8-bis(3-methylimidazolium-1-yl)octane bistriflimide (C8(mim)2(Tf2N)2) ionic liquid (IL), with the IL molar fraction (χIL) ranging from 0 to 1. The XAS and MD results show that major changes take place in the La3+ first solvation shell when moving from pure acetonitrile to pure C8(mim)2(Tf2N)2. With increasing the IL concentration of the mixture, the La3+ first shell complex progressively loses acetonitrile molecules to accommodate more and more oxygen atoms of the Tf2N- anions. Except in pure C8(mim)2(Tf2N)2, La3+ is always able to coordinate both acetonitrile and Tf2N- anions, with a ratio between the two different ligands strongly dependent on the IL content. Moreover, the La3+ ion prefers to form a 10-coordinated first shell complex in all the investigated systems, with a slightly different geometry of the cluster depending on the composition of the La3+ first solvation shell. In particular, when moving from pure acetonitrile to pure C8(mim)2(Tf2N)2, the La3+ first solvation shell passes from a bicapped square antiprism geometry where all the Tf2N- anions act only as monodentate ligands, to a "1 + 5 + 4" structure in which the Tf2N- anion binds La3+ both in a monodentate and bidentate fashion. The great adaptability shown by the La3+ solvation structure allows it to reach the optimal balance among many different forces at play involving all of the different species present in the mixtures.

8.
J Org Chem ; 84(21): 13549-13556, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532207

RESUMO

The oxidation of a series of hydrocarbons by the nonheme iron(IV)-oxo complex [(N4Py)FeIV═O]2+ is efficiently mediated by N-hydroxyphthalimide. The increase of reactivity is associated to the oxidation of the mediator to the phthalimide N-oxyl radical, which efficiently abstracts a hydrogen atom from the substrates, regenerating the mediator in its reduced form.

9.
Phys Chem Chem Phys ; 21(24): 13058-13069, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31168535

RESUMO

A synergic approach combining molecular dynamics (MD) and extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate weak-concentrated (0.1 M) acetonitrile solutions of La(Tf2N)3 and Dy(Tf2N)3 salts (where Tf2N is the bis(trifluoromethanesulfonyl)imide). The MD simulations show that contact ion pairs between the Ln3+ cations and the Tf2N- anions are formed in the solutions. This finding has been experimentally confirmed by the analysis of the Ln K-edge EXAFS experimental signals of the two solutions. Both La3+ and Dy3+ ions preferentially form a 10-fold first shell complex composed of acetonitrile molecules and Tf2N- counterions with a bicapped square antisprism (BSAP) geometry. As a consequence of lanthanide contraction, the Dy3+ cation binds the inner shell solvent molecules at shorter distances as compared to La3+ and the high charge density of Dy3+ allows the coordination with additional ligands at longer distances. On the other hand, the bigger La3+ ion forms a very crowded coordination shell with a larger average distance and with the capped molecules at distances from the ion more similar to the inner shell ones. This peculiar coordination structure could explain the high catalytic activity of the Ln-Tf2N complexes and the high Lewis acidity of the lanthanide center.

10.
J Org Chem ; 84(4): 1778-1786, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668097

RESUMO

Evaluation of polar effects in hydrogen atom transfer (HAT) processes is made difficult by the fact that in most cases substrates characterized by lower bond dissociation energies (BDEs), activated from an enthalpic point of view, are also more activated by polar effects. In search of an exception to this general rule, we found that the introduction of a methoxy substituent in the 3-position of 2,6-dimethylphenol results in a small increase in the O-H BDE and a decrease of the ionization potential of the phenol. These findings suggest that the enthalpic effect associated with the addition of the m-methoxy group to 2,6-dimethylphenol will decrease reaction rates, while the polar effects will increase reaction rates. Our model analysis of polar effects has been experimentally validated by comparing the reactivity of 2,6-dimethylphenol with that of 2,6-dimethyl-3-methoxyphenol in HAT promoted by a series of radicals (cumyloxyl, galvinoxyl, 2,2-diphenylpycrylhydrazyl, phthalimide- N-oxyl, and benzotriazole- N-oxyl radicals). In line with our predictions, the ratio of HAT rate constants ( kH mOMe/ kHH) is larger in cases where there is a greater contribution of polar effects in the HAT reaction, i.e., in HAT promoted by N-oxyl radicals containing electron-withdrawing groups or when more polar solvents are employed.

11.
J Phys Chem B ; 122(10): 2779-2791, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29481749

RESUMO

A synergic approach combining molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) has been used to investigate diluted (0.1 M) aqueous solutions of two lanthanide ions (Ln3+), namely, La3+ and Dy3+, with triflate, nitrate, and bis(trifluoromethylsulfonyl)imide (Tf2N-) as counterions. The different complexing ability of the three anions has been highlighted by the analysis of the MD simulations: Tf2N- does not form inner-sphere complexes, while a small amount of triflate coordinates both the La3+ and Dy3+ cations in their first solvation shell. On the other hand, the nitrate ion is almost absent in the La3+ first coordination sphere, while forming contact ion pairs with Dy3+. Both lanthanide ions are found to preferentially interact with the water molecules, and the total number of oxygen atoms coordinating the Ln3+ cations in their first solvation sphere is the same in all of the solutions, regardless of whether they belong to water molecules or to the counterion. The presence of counterions in the cation first or second shell changes neither the first shell distance nor the symmetry of the hydration complex formed in solution. The MD results have been confirmed by comparison with the Ln K-edge XAS experimental data, and the quantitative analysis of the extended X-ray absorption fine structure (EXAFS) spectra of the three salt solutions has provided a definite proof of the accuracy of the force field employed in the simulations and of the MD structural result. The anion-water and water-water hydrogen bond lifetimes have been analyzed highlighting the slow down effect of the triflate, nitrate, and Tf2N- anions on the hydrogen bond dynamics in the Ln3+ first solvation shell, with the effect being stronger in the Dy3+ solutions, due to the higher charge density of the Dy3+ ion as compared to La3+.

12.
Phys Chem Chem Phys ; 20(4): 2662-2675, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29319089

RESUMO

A synergic approach combining molecular dynamics (MD) simulations and X-ray absorption spectroscopy has been used to investigate diluted solutions of zinc bis(trifluoromethanesulfonyl)imide (Zn(Tf2N)2) in Tf2N- based ionic liquids (ILs) having different organic cations, namely the 1-butyl-3-methylimidazolium ([C4(mim)]+), 1,8-bis(3-methylimidazolium-1-yl)octane ([C8(mim)2]2+), N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium ([Choline]+) and butyltrimethylammonium ([BTMA]+) ions. All of the ILs tend to dissolve the Zn(Tf2N)2 species giving rise to a different structural arrangement around the Zn2+ as compared to that of the salt crystallographic structure. A quantitative analysis of the Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra of the solutions has been carried out based on the microscopic description of the systems derived from the MD simulations. A very good agreement between theoretical and experimental EXAFS signals has been obtained, allowing us to assess the reliability of the MD structural results for all the investigated solutions. The Zn2+ ion has been shown to be coordinated by six oxygen atoms of the Tf2N- anions arranged in an octahedral geometry in all the Tf2N- based ILs, regardless of the organic cation of the IL solvent. However, the nature of the organic cation has a small influence on the overall spatial arrangement of the Tf2N- anions in the Zn2+ first solvation shell: two different Zn-Tf2N complexes are found in solution, a 5-fold one, with one bidentate and four monodentate Tf2N- anions, and a 6-fold one with only monodentate ligands, with the ratio between the two species being slightly dependent on the IL cation. The IL ion three-dimensional arrangements in the different IL solutions were also investigated by carrying out a thorough analysis of the MD simulations, highlighting similarities and differences between imidazolium and ammonium based IL systems.

13.
RSC Adv ; 8(34): 19144-19151, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35539690

RESUMO

The oxidation of a series of N-acetyl amino acid methyl esters with H2O2 catalyzed by a very simple iminopyridine iron(ii) complex 1 easily obtainable in situ by self-assembly of 2-picolylaldehyde, 2-picolylamine, and Fe(OTf)2 was investigated. Oxidation of protected aliphatic amino acids occurs at the α-C-H bond exclusively (N-AcAlaOMe) or in competition with the side-chain functionalization (N-AcValOMe and N-AcLeuOMe). N-AcProOMe is smoothly and cleanly oxidized with high regioselectivity affording exclusively C-5 oxidation products. Remarkably, complex 1 is also able to catalyze the oxidation of the aromatic N-AcPheOMe. A marked preference for the aromatic ring hydroxylation over Cα-H and benzylic C-H oxidation was observed, leading to the clean formation of tyrosine and its phenolic isomers.

14.
J Org Chem ; 82(11): 5761-5768, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28481527

RESUMO

A change in regioselectivity has been observed in the hydrogen atom transfer (HAT) reactions from 4-alkyl-N,N-dimethylbenzylamines (alkyl = ethyl, isopropyl, and benzyl) to the phthalimide N-oxyl radical (PINO) by effect of protonation. This result can be rationalized on the basis of an acid-induced deactivation of the C-H bonds α to nitrogen toward HAT to PINO as evidenced by the 104-107-fold decrease in the HAT rate constants in acetonitrile following addition of 0.1 M HClO4. This acid-induced change in regioselectivity has been successfully applied for selective functionalization of the less activated benzylic C-H bonds para to the CH2N(CH3)2 group in the aerobic oxidation of 4-alkyl-N,N-dimethylbenzylamines catalyzed by N-hydroxyphthalimide in acetic acid.

15.
J Org Chem ; 82(12): 6133-6141, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28534620

RESUMO

A kinetic study of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the quinolinimide-N-oxyl radical (QINO) was performed in CH3CN. The HAT rate constants are significantly higher than those observed with the phthalimide-N-oxyl radical (PINO) as a result of enthalpic and polar effects due to the presence of the N-heteroaromatic ring in QINO. The relevance of polar effects is supported by theoretical calculations conducted for the reactions of the two N-oxyl radicals with toluene, which indicate that the HAT process is characterized by a significant degree of charge transfer permitted by the π-stacking that occurs between the toluene and the N-oxyl aromatic rings in the transition state structures. An increase in the HAT reactivity of QINO was observed in the presence of 0.15 M HClO4 and 0.15 M Mg(ClO4)2 due to the protonation or complexation with the Lewis acid of the pyridine nitrogen that leads to a further decrease in the electron density in the N-oxyl radical. These results fully support the use of N-hydroxyquinolinimide as a convenient substitute for N-hydroxyphthalimide in the catalytic aerobic oxidations of aliphatic hydrocarbons characterized by relatively high C-H bond dissociation energies.

16.
J Org Chem ; 81(24): 12382-12387, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978740

RESUMO

The oxidation of aryl 1-methyl-1-phenylethyl sulfides promoted by the nonheme iron(IV)-oxo complexes [(N4Py)FeIV═O]2+ and [(Bn-TPEN)FeIV═O]2+ occurs by an electron transfer-oxygen rebound (ET-OT) mechanism leading to aryl 1-methyl-1-phenylethyl sulfoxides accompanied by products derived from Cα-S fragmentation of sulfide radical cations (2-phenyl-2-propanol and diaryl disulfides). For the first time, the rate constants for the oxygen rebound process (kOT), which are in the range of <0.8 × 104 to 3.5 × 104 s-1, were determined from the fragmentation rate constants of the radical cations (kf) and the S oxidation/fragmentation product ratios.

17.
J Org Chem ; 81(23): 11924-11931, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27934460

RESUMO

A kinetic study of the hydrogen atom transfer (HAT) reactions from a series of secondary N-(4-X-benzyl)acetamides and tertiary amides to the phthalimide-N-oxyl radical (PINO) has been carried out. The results indicate that HAT is strongly influenced by structural and medium effects; in particular, the addition of Brønsted and Lewis acids determines a significant deactivation of C-H bonds α to the amide nitrogen of these substrates. Thus, by changing the reaction medium, it is possible to carefully control the regioselectivity of the aerobic oxidation of amides catalyzed by N-hydroxyphthalimide, widening the synthetic versatility of this process.

18.
Phys Chem Chem Phys ; 18(24): 16544-54, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27272477

RESUMO

The structural behavior of geminal dicationic ionic liquid 1,n-bis[3-methylimidazolium-1-yl] alkane bromide ([Cn(mim)2]Br2)/water mixtures has been studied using extended X-ray absorption fine structure (EXAFS) spectroscopy in combination with molecular dynamics (MD) simulations. The properties of the mixtures are investigated as a function of both water concentration and alkyl-bridge chain length. The very good agreement between the EXAFS experimental data and the theoretical curves calculated from the MD structural results has proven the validity of the theoretical framework used for all of the investigated systems. In all the solutions the water molecules are preferentially coordinated with the Br(-) ion, even if a complex network of interactions among dications, anions and water molecules takes place. The local molecular arrangement around the bromide ion is found to change with increasing water content, as more and more water molecules are accomodated in the Br(-) first coordination shell. Moreover, with the decrease of the alkyl-bridge chain length, the interactions between dications and anions increase, with Br(-) forming a bridge between the two imidazolium rings of the same dication. On the other hand, in [Cn(mim)2]Br2/water mixtures with long alkyl-bridge chains peculiar internal arrangements of the dications are found, leading to different structural features of geminal dicationic ionic liquids as compared to their monocationic counterparts.

20.
J Org Chem ; 81(6): 2513-20, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26886491

RESUMO

The oxidation of a series of aryl diphenylmethyl sulfides (4-X-C6H4SCH(C6H5)2, where X = OCH3 (1), X = CH3 (2), X = H (3), and X = CF3 (4)) promoted by the nonheme iron(IV)-oxo complex [(N4Py)Fe(IV)═O](2+) occurs by an electron transfer-oxygen transfer (ET-OT) mechanism as supported by the observation of products (diphenylmethanol, benzophenone, and diaryl disulfides) deriving from α-C-S and α-C-H fragmentation of radical cations 1(+•)-4(+•), formed besides the S-oxidation products (aryl diphenylmethyl sulfoxides). The fragmentation/S-oxidation product ratios regularly increase through a decrease in the electron-donating power of the aryl substituents, that is, by increasing the fragmentation rate constants of the radical cations as indicated by a laser flash photolysis (LFP) study of the photochemical oxidation of 1-4 carried out in the presence of N-methoxyphenanthridinium hexafluorophosphate (MeOP(+)PF6(-)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...