Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613265

RESUMO

Kombucha tea was made by the fermentation of SCOBY culture of green tea broth with the addition of Fucus vesiculosus algae extract, Cetraria islandica lichen extract and their mixture. Kombucha was also made without the herbal supplements as a control. After 11 days of fermentation, in addition to the yeast Brettanomyces bruxellensis and the bacteria Komagataeibacter rhaeticus and Komagataeibacter hansenii contained in all of the samples, the yeast Zygosaccharomyces bailii and bacteria Komagataeibacter cocois were detected in the samples with the herbal extracts. In all of the kombucha with herbal additives, the total fraction of yeast was decreased as compared to the control. The total content of polyphenols and the antioxidant activity of the beverages with and without the addition of herbal extracts were comparable. The kombucha made with the algae extract showed an increased content of sucrose and organic acids, while the fructose and glucose content in the samples with algae and the mixture of extracts were lower than in the other samples. The samples with the algae extract had the highest organoleptic indicators "aroma", "clarity" and "acidity", while the control samples had slightly higher indicators of "taste" and "aftertaste". The results of this study indicate the potential of algae and lichens as functional supplements for obtaining non-alcoholic fermented beverages with additional nutraceutical value.

2.
Biology (Basel) ; 10(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477817

RESUMO

Fucoidans, sulfated polysaccharides found in cell walls of brown algae, are considered as a promising antimicrobial component for various applications in medicine and the food industry. In this study, we compare the antibacterial properties of two fractions of fucoidan from the brown algae Fucus vesiculosus gathered in the littoral of the Barents Sea and sampled at different stages of purification. The crude fraction of fucoidan was isolated from algae by extraction with aqueous ethanol and sonication. The purified fraction was obtained by additional treatment of the crude fraction with a solution of calcium chloride. The structural features of both fractions were characterized in detail and their antibacterial effects against several Gram-positive and Gram-negative bacteria were compared by photometry, acridine orange staining assay, and atomic force microscopy. Fucoidan inhibited growth in all of the above microorganisms, showing a bacteriostatic effect with minimum inhibitory concentrations (MIC) in the range between 4 and 6 mg/mL, with E. coli being the most sensitive to both fractions. Changes in the chemical composition after treatment of the crude fraction with a solution of calcium chloride led to a decrease in the content of sulfates and uronic acids and diminished antibacterial activity.

3.
J Basic Microbiol ; 55(4): 471-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25346501

RESUMO

Enzymes capable of modifying the sulfated polymeric molecule of fucoidan are mainly produced by different groups of marine organisms: invertebrates, bacteria, and also some fungi. We have discovered and identified a new strain of filamentous fungus Fusarium proliferatum LE1 (deposition number in Russian Collection of Agricultural Microorganisms is RCAM02409), which is a potential producer of fucoidan-degrading enzymes. The strain LE1 (RCAM02409) was identified on the basis of morphological characteristics and analysis of ITS sequences of ribosomal DNA. During submerged cultivation of F. proliferatum LE1 in the nutrient medium containing natural fucoidan sources (the mixture of brown algae Laminaria digitata and Fucus vesiculosus), enzymic activities of α-L-fucosidase and arylsulfatase were inducible. These enzymes hydrolyzed model substrates, para-nitrophenyl α-L-fucopyranoside and para-nitrophenyl sulfate, respectively. However, the α-L-fucosidase is appeared to be a secreted enzyme while the arylsulfatase was an intracellular one. No detectable fucoidanase activity was found during F. proliferatum LE1 growth in submerged culture or in a static one. Comparative screening for fucoidanase/arylsulfatase/α-L-fucosidase activities among several related Fusarium strains showed a uniqueness of F. proliferatum LE1 to produce arylsulfatase and α-L-fucosidase enzymes. Apart them, the strain was shown to produce other glycoside hydrolyses.


Assuntos
Arilsulfatases/metabolismo , Fusarium/metabolismo , Polissacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , DNA Ribossômico , Fucus , Fusarium/crescimento & desenvolvimento , Fusarium/isolamento & purificação , Laminaria , Nitrobenzenos/metabolismo , Nitrofenóis/metabolismo , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...