Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38503255

RESUMO

The most stable thione tautomeric forms of N-methylthiourea, thiobenzamide and 2-cyanothioacetamide were isolated in low-temperature argon matrices. The higher-energy thiol tautomers of these compounds were generated upon irradiation of matrix-isolated monomers with UV (λ > 270 nm) light. For N-methylthiourea and thiobenzamide, kept in the dark at 3.5 K for a long period of time, a spontaneous thiol â†’ thione hydrogen atom tunneling transformation occurred. Only the thiol isomers with the favorably oriented hydrogen atom of the imino group underwent these hydrogen-atom tunneling processes. The other thiol isomers, with the hydrogen atom of the imino group oriented towards the sulfur atom, did not undergo the thiol â†’ thione conversion. For the photogenerated thiol forms of 2-cyanothioacetamide, no spontaneous thiol â†’ thione tautomeric transformation was detected. Instead, only the spontaneous conformational change of one S-H rotamer of the thiol 2-cyanothioacetamide tautomer into the other S-H rotamer was observed.

2.
J Phys Chem A ; 127(14): 3104-3113, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37011132

RESUMO

The photochemical properties of monomeric 7-hydroxyquinoline substituted at position 8 with carbaldehyde or aldoxime groups were studied for the molecules isolated in solid Ar low-temperature matrices (at 10 K). It was experimentally demonstrated that upon UV excitation, both carbaldehyde and aldoxime groups act as intramolecular cranes transmitting hydrogen atoms from the hydroxyl group to the remote nitrogen atom of the quinoline ring. Furthermore, in the case of 7-hydroxyquinoline-8-aldoxime (and its derivatives), the second photochemical channel was activated upon UV (λ > 360 nm) excitation. This process involves syn-anti isomerization around the double C═N bond in the aldoxime group. The structures of the reactant hydroxy tautomeric form and the photoproduced isomers of the studied molecules were unequivocally determined by means of IR spectroscopy combined with theoretical predictions of the IR spectra of the candidate structures.

3.
J Phys Chem A ; 125(34): 7437-7448, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34406775

RESUMO

To shed more light on the mechanisms of UV-induced hydrogen-atom-transfer processes in heterocyclic molecules, phototautomeric thione → thiol reactions were investigated for thione compounds isolated in low-temperature Ar as well as in n-H2 (normal hydrogen) matrices. These studies concerned thione compounds with a five-membered heterocyclic ring and thione compounds with a six-membered heterocyclic ring. The experimental investigation of 2-thioimidazole and 3-thio-1,2,4-triazole (thione compounds with a five-membered heterocyclic ring) revealed that for the compounds isolated in solid n-H2 only trace amounts of thiol photoproducts were photogenerated; even though for the same compounds isolated in the solid Ar matrix, the thione → thiol photoconversion was nearly total. In contrast to that, for 3-thiopyridazine and 2-thioquinoline (thione compounds with a six-membered heterocyclic ring) isolated in solid n-H2, the UV-induced thione → thiol conversion occurred with the yield reaching 25-50% of the yield of the analogous process observed for the same species isolated in solid Ar. The obtained experimental results allow us to conclude that the dissociation-association mechanism nearly exclusively governs the phototransformation in thione heterocycles with high barriers for tautomerization (such as thione compounds with a five-membered ring), whereas the strictly intramolecular hydrogen-atom shift contributes to the mechanism of hydrogen-atom transfer in thione heterocycles with lower barriers (such as thione compounds with a six-membered ring).

4.
J Phys Chem A ; 124(20): 4106-4114, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320240

RESUMO

Benzoazetinone was photochemically generated by UV irradiation of isatin isolated in low-temperature Ar matrixes. Upon UV (λ = 278 nm) excitation of isatin, monomers of the compound underwent decarbonylation and the remaining part of the molecule adopted the benzoazetinone structure or the structure of its open-ring isomer α-iminoketene. The same products (benzoazetinone and α-iminoketene) were generated by UV (λ = 278 nm) induced decarboxylation of matrix-isolated monomers of isatoic anhydride. Photoproduced α-iminoketene appeared in the low-temperature matrixes as a mixture of syn and anti isomers. Photoproducts generated upon λ = 278 nm irradiation of matrix-isolated isatin were subsequently exposed to λ = 532 nm light. That irradiation resulted in the shift of the α-iminoketene-benzoazetinone population ratio in favor of the latter closed-ring structure. The next irradiation at 305 nm caused the shift of the α-iminoketene-benzoazetinone population ratio in the opposite direction, that is, in favor of the open-ring isomer. Neither benzoazetinone nor its α-iminoketene open-ring isomer was generated upon UV (λ = 278 nm) irradiation of phthalimide isolated in Ar matrixes. Instead, the UV-excited monomers of this compound underwent such phototransformations as oxo → hydroxy phototautomerism or degradation of the five-membered ring with release of HNCO and CO. The efficiency of these photoconversions was low.

5.
Phys Chem Chem Phys ; 21(41): 22857-22868, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31599896

RESUMO

Three low-energy isomers of 9-methylguanine, the amino-oxo (AO) form and two amino-hydroxy (AH1 and AH2) conformers, were trapped from the gas phase into low-temperature argon matrices. The AH1 and AH2 isomers, differing in the orientation of the OH group, were found to transform into each other upon excitation with near-IR light. The population of the AO form of the compound was not changed upon any near-IR irradiation of the matrix samples. Using monochromatic near-IR light, generated by a frequency-tunable laser source, it was possible to selectively induce the AH1 → AH2 or AH2 → AH1 conversion. Photoreversibility of this conformational transformation was then demonstrated. Exposure of matrix-isolated monomers of 9-methylguanine to broadband near-IR light also led to conformational conversions within the amino-hydroxy tautomeric form; the final stage of this process was always the same photostationary state independent of the initial ratio of AH1 and AH2 populations. Spontaneous conformational conversion, transforming the higher-energy AH2 form into the lower-energy AH1 isomer, was observed for matrix-isolated monomers of 9-methylguanine kept in the dark. The mechanism of this process must rely on quantum tunneling of the light hydrogen atom. Irradiation of matrix-isolated 9-methylguanine with UV laser light at λ = 288 or 285 nm led to a substantial consumption of the two AH forms, while the amount of AO isomer remained unchanged. On the other hand, a decrease in the population of the AO isomer occurred upon excitations at shorter wavelengths, λ = 280 or 275 nm. The spectral changes observed after UV-irradiation suggest the generation (and stabilization in the matrix) of a radical species, resulting from the photocleavage of the O-H or N1-H bonds, in the AH or AO isomer, respectively.


Assuntos
Argônio/química , Temperatura Baixa , Guanina/análogos & derivados , Raios Infravermelhos , Raios Ultravioleta , Guanina/química , Isomerismo , Conformação Molecular/efeitos da radiação
6.
J Phys Chem A ; 123(17): 3831-3839, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30943718

RESUMO

Conformers and near-IR-induced conformational transformations were studied for monomers of glycolamide isolated in low-temperature matrixes. Two conformational isomers of the compound, Tt and Cc, were trapped from the gas phase into solid Ar matrixes. Selective near-IR excitation of glycolamide molecules adopting the Tt form led to the Tt → Cc conformational conversion. Analogously, selective near-IR excitation of Cc conformers resulted in the Cc → Tt transformation. Monochromatic near-IR light, generated by frequency-tunable laser sources, was used for irradiation of matrix-isolated monomers. Near-IR-induced Tt → Cc and Cc → Tt conformational transformations occurred upon excitation of 2νOH, 2νaNH2, and 2νsNH2 overtones, as well as upon excitation of νaNH2 + νsNH2 combination modes. In spite of the structural similarity of glycolamide and N-hydroxyurea, no conformational conversions were observed for monomers of the latter compound isolated in Ar matrixes and excited with near-IR light. The comparison of the effects of near-IR excitations of glycolamide and N-hydroxyurea demonstrates that transformations involving rotation of molecular fragments around a single C-C bond occur much easier than transformations involving rotation of the fragments around a C-N bond. The efficiency of the latter conversions is extremely low.

7.
J Chem Phys ; 149(10): 104301, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218999

RESUMO

UV-induced transformations were studied for monomers of 6-azacytosine isolated in low-temperature Ar matrices. In contrast to cytosine, where the amino-hydroxy (AH) tautomer is the lowest-energy form, the amino-oxo (AO) and imino-oxo (IO) isomers of 6-azacytosine were found to be the most stable and most populated. Due to the high relative energy of the AH tautomer of 6-azacytosine, this form is not populated in low-temperature matrices after their formation and prior to any irradiation. Excitation of 6-azacytosine monomers with UV light from the 328-300 nm range led to structural transformations of AO and IO forms. The initially most populated AO tautomer was observed either to convert, in a phototautomeric reaction, into the AH product or to undergo photodecarbonylation to yield 4-amino-1,2,3-(2H)-triazole. The relative efficiencies of the two processes depend on the wavelength and on the pulsed or continuous-wave character of the UV light used for excitation. For the IO tautomer of 6-azacytosine, the excitation with UV 328-300 nm light induced the photoconversion of the initially more populated anti IO1 isomer into the syn IO2 form. This transformation was found to be partially photoreversible.

8.
Phys Chem Chem Phys ; 20(20): 13994-14002, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29744490

RESUMO

Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

9.
J Chem Phys ; 147(19): 194304, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166121

RESUMO

Photochemical transformations were studied for monomers of indole and 3-formylindole isolated in low-temperature noble-gas matrices. Upon UV (λ > 270 nm) irradiation of indole trapped in argon and neon matrices, the initial 1H-form of the compound converted into the 3H-tautomer. Alongside this photoinduced hydrogen-atom transfer, an indolyl radical was also generated by photodetachment of the hydrogen atom from the N1-H bond. Excitation of 3-formylindole isolated in an argon matrix with UV (λ > 335 nm) light led to interconversion between the two conformers of the 1H-tautomer, differing from each other in the orientation of the formyl group (cis or trans). Parallel to this conformational phototransformation, the 3H-form of the compound was generated in the 1H → 3H phototautomeric conversion. The photoproducts emerging upon UV irradiation of indole and 3-formylindole were identified by comparison of their infrared spectra with the spectra calculated for candidate structures.

10.
J Phys Chem A ; 121(37): 6932-6941, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28849925

RESUMO

The UV-induced thione → thiol phototautomeric reaction has been studied for monomeric 3-thio-1,2,4-triazole (3-ST) isolated in low-temperature Ar and n-H2 (normal hydrogen) matrixes. Prior to any UV irradiation, monomers of 3-ST isolated in solid Ar or solid n-H2 adopted mainly the most stable thione tautomeric form, as revealed by the IR spectra. Upon UV (λ > 275 nm) irradiation of 3-ST isolated in Ar matrixes, the IR bands due to this thione form decreased, while a set of initially weak bands increased in intensity. Growing bands indicated generation of a photoproduct, which was identified as the thiol tautomer with labile hydrogen atoms attached to sulfur and N(2) atoms. The UV-induced spectral changes allowed also identification of another minor thiol tautomer of 3-ST, which was present in the matrix prior to any irradiation and did not change its population upon exposure to UV light. The identification of the observed isomeric forms was supported by comparison of their separated experimental IR spectra with the spectra theoretically predicted for the various structures of 3-ST. The thione → thiol phototautomerization that was the main UV-induced process observed for 3-ST in Ar matrixes did not occur for monomers of the compound trapped in solid n-H2.

11.
Phys Chem Chem Phys ; 19(18): 11447-11454, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425538

RESUMO

Photochemical transformations were investigated for monomers of 7-azaindole isolated in low-temperature Ar and normal-H2 (n-H2) matrices. The most stable N1H tautomer was the only form of the compound populated in Ar and n-H2 matrices before any irradiation. Upon exposure of Ar matrices to UV (λ > 270 nm) light, two higher-energy tautomers N7H and C3H were photoproduced. Additionally, spectral signatures of the photogenerated 7-azaindolyl radical were also found. All of these photoproducts were experimentally observed for the first time. So far, the N7H tautomer had been known only as a transient species, appearing upon relaxation of photoexcited hydrogen-bonded dimers or complexes. For 7-azaindole isolated in an n-H2 matrix and irradiated at λ > 270 nm, only the C3H tautomer and the 7-azaindolyl radical were photogenerated, whereas the N7H tautomer was not photoproduced at all. The drastic dependence of photogeneration of the N7H form on the matrix environment (solid Ar or solid n-H2) is as a characteristic feature of a specific class of UV-induced hydrogen-atom-transfer processes occurring in matrix-isolated heterocycles.

12.
J Phys Chem A ; 120(17): 2647-56, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27070389

RESUMO

Conformational transformations were investigated for molecules of kojic acid trapped in low-temperature argon and nitrogen matrixes. Two conformers, differing from each other by 120° rotation of the hydroxymethyl (-CH2OH) moiety, were found to be populated in freshly deposited matrixes, prior to any irradiation. Matrixes containing isolated monomers of kojic acid were irradiated with narrowband, tunable near-infrared (near-IR) laser light. Excitations at wavenumbers corresponding to the overtone of the stretching vibration of the OH bond of the hydroxymethyl group led to conversion of one of the observed conformers into another. The direction of this conformational transformation depended on the wavenumber (within the 7126-7115 cm(-1) range) used for irradiation. The same conformational photoconversion was also observed to occur upon narrowband irradiation at much lower wavenumbers (from the 6468-6447 cm(-1) range). Near-IR light from this range selectively excites overtone vibrations of the OH group directly attached to the heterocyclic ring. Such an observation provides a convincing evidence of a long-range vibrational energy transfer from the initially excited OH group (directly attached to the ring) to the remote hydroxymethyl fragment which changes its orientation. Structural changes, occurring in matrix-isolated molecules of kojic acid upon near-IR excitation, were monitored by FTIR spectroscopy.

13.
J Phys Chem A ; 120(13): 2078-88, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26986193

RESUMO

Conformers and photoinduced conformational transformations were studied for monomers of thiazole-2-carboxylic acid (TCA). The matrix-isolation technique and excitations with narrowband near-IR and UV light, tuned in an optical parametric oscillator, were used for this purpose. Form I, with the carboxylic moiety in the trans orientation and with the hydrogen atom of the OH group directed toward the nitrogen atom of the ring, was the most abundant in low-temperature argon or nitrogen matrixes. Conformer II, differing from I by 180° rotation of the OH group around the C-O bond, was also trapped in the matrixes, but in much smaller amount. The abundance of form II was experimentally determined as ∼6% of the total amount of TCA molecules. Selective excitation of I with narrowband near-IR laser light resulted in I → II transformation. This near-IR-induced conformational change was photoreversible: form II converted back to I upon selective excitation of II with near-IR light of different wavelength. Conformational conversions of I into II, or vice versa, were also induced in TCA monomers by narrowband UV excitations at 300 nm (for I → II transformation) and at 305 nm (for II → I transformation). A spontaneous conversion of photogenerated II into the most stable form I was observed for the compound trapped in the matrix at 15 K and kept in the dark. This process was very slow; the estimated half-life time of conformer II was longer than 50 h. Finally, TCA was shown to thermally decompose at room temperature, yielding CO2 and thiazole.

14.
J Phys Chem A ; 119(35): 9262-71, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26274400

RESUMO

Near-IR-induced transformations, converting one amino-thiol conformer of 2-thiocytosine into another, were observed for monomers of the compound isolated in Ne, Ar, and N2 low-temperature matrixes. The two conformers involved in this phototransformation differ from each other by 180° rotation of the SH group. To induce the conversion, conformers of 2-thiocytosine were selectively excited to the overtone (or combination) NH2 stretching vibrational states, using very narrowband (fwhm <1 MHz) near-IR light generated in a tunable diode laser. The conformational changes were monitored by IR spectroscopy. The conformational transformation observed in the current work provides a clear evidence of the vibrational energy redistribution from the initially excited NH2 moiety to the remote SH group that changes its orientation.

15.
J Phys Chem A ; 119(6): 1037-47, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25587853

RESUMO

Conformers of 2-furoic acid were studied using the matrix-isolation technique combined with narrow-band near-IR excitations with tunable laser light. Two conformers of the compound were trapped from the gas phase into low-temperature Ar or Ne matrixes with the population ratio of nearly 1:1. The two forms differ from each other by 180° rotation of the carboxylic group with respect to the furan ring. In both structures, the OH group adopts the cis orientation, with its H atom directed toward the C═O bond of the O═C-O-H group. Narrow-band near-IR excitations of the OH stretching overtone vibrations resulted in transformation of one of the initially observed conformers into a third conformational structure. This near-IR-induced isomerization concerned rotation of the OH group from the initial cis orientation to the trans conformation with the hydrogen atom directed toward the oxygen atom of the furan ring. In the photoproduced conformer, the hydrogen-bond-like O-H···O interaction (between O-H and the oxygen atom of the furan ring) is rather weak. Nevertheless, this interaction stabilized the structure so that it was present in the matrix for several hours after the near-IR-induced generation. The spontaneous conversion of the photogenerated, higher-energy form back into the more stable conformer with the carboxylic group in cis orientation was monitored for 2-furoic acid isolated in Ar and Ne matrixes. The speed of this process was found to be dependent on temperature and on the matrix material. The experimentally determined half-life times of this conformational conversion occurring in the dark are t1/2 = 1390 min (Ar, 5.5 K); t1/2 = 630 min (Ar, 15 K); t1/2 = 240 min (Ne, 5.5 K). The three conformers of 2-furoic acid observed in the present work were identified by comparison of their infrared spectra with the spectra theoretically calculated for the candidate structures.

16.
Phys Chem Chem Phys ; 17(7): 4888-98, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25474172

RESUMO

Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ < 332 nm. The obtained results clearly show that H-atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared spectra with the spectra theoretically calculated for the candidate structures at the B3LYP/aug-cc-pVTZ level.

17.
J Phys Chem A ; 119(11): 2203-10, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24611466

RESUMO

A tunable diode laser was applied as a source of narrowband near-infrared light used to manipulate the structure of the molecule of oxamic acid. Monomers of the most stable conformer I of the molecule, with the trans orientation of the O═COH group and the trans orientation of the O═CC═O fragment, were trapped from the gas phase in low-temperature argon, neon, and nitrogen matrixes. Monomers of oxamic acid, isolated in argon or neon matrixes, were then irradiated with narrowband near-IR light from the diode laser tuned at 6833 (Ar) or 6840 cm(-1) (Ne). Upon such irradiation another conformer, II, of oxamic acid was generated, with cis orientation of the O═COH group and trans orientation of the O═CC═O fragment. Both forms were identified by comparison of their experimental mid-IR spectra with the spectra theoretically calculated for I and II. Subsequent irradiation of the matrix at 6940 (Ar) or 6991 cm(-1) (Ne), where absorption appeared in the near-IR spectrum of the photoproduct, led to photoconversion of conformer II into form I. In a series of subsequent irradiations at 6833(Ar)/6840(Ne) cm(-1) and at 6940(Ar)/6991(Ne) cm(-1), the population of oxamic acid molecules was selectively shifted several times from I to II and vice versa. As far as we know, this is the first reported study where a tunable diode laser source of narrowband near-IR light was used to manipulate the structure of a molecule. Spontaneous II → I transformation was observed for Ne and Ar matrixes kept in the dark and at cryogenic temperature.

18.
J Phys Chem A ; 118(38): 8708-16, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25144919

RESUMO

The crystal structure of 3-quinolinecarboxaldehyde (3QC) has been solved, and the compound has been shown to crystallize in the space group P21/c (monoclinic) with a = 6.306(4), b = 18.551(11), c = 6.999(4) Å, ß = 106.111(13)°, and Z = 4. The crystals were found to exhibit pseudomerohedral twinning with a twin law corresponding to a two-fold rotation around the monoclinic (100) reciprocal lattice axis (or [4 0 1] in direct space). Individual molecules adopt the syn conformation in the crystal, with the oxygen atom of the aldehyde substituent directed toward the same side of the ring nitrogen atom. In the gas phase, the compound exists in two nearly isoenergetic conformers (syn and anti), which could be successfully trapped in solid argon at 10 K, and their infrared spectra are registered and interpreted. Upon in situ irradiation of matrix-isolated 3QC with UV light (λ > 315 nm), significant reduction of the population of the less stable anti conformer was observed, while that of the conformational ground state (syn conformer) increased, indicating occurrence of the anti → syn isomerization. Upon irradiation at higher energy (λ > 235 nm), the syn → anti reverse photoreaction was observed. Interpretation of the structural, spectroscopic, and photochemical experimental data received support from quantum chemical theoretical results obtained at both DFT/B3LYP (including TD-DFT investigation of excited states) and MP2 levels, using the 6-311++G(d,p) basis set.

19.
J Phys Chem A ; 118(30): 5626-35, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25002253

RESUMO

Structural transformations were induced in conformers of glycolic acid by selective excitation with monochromatic tunable near-infrared laser light. For the compound isolated in Ar matrixes, near-IR excitation led to generation of two higher-energy conformers (GAC; AAT) differing from the most stable SSC form by 180° rotation around the C-C bond. A detailed investigation of this transformation revealed that one conformer (GAC) is produced directly from the near-IR-excited most stable conformer. The other higher-energy conformer (AAT) was effectively generated only upon excitation of the primary photoproduct (GAC) with another near-IR photon. Once these higher-energy conformers of glycolic acid were generated in an Ar matrix, they could be subsequently transformed into one another upon selective near-IR excitations. Interestingly, no repopulation of the initial most stable SSC conformer occurred upon near-IR excitation of the higher-energy forms of the compound isolated in solid Ar. A dramatically different picture of near-IR-induced conformational transformations was observed for glycolic acid isolated in N2 matrixes. In this case, upon near-IR excitation, the most stable SSC form converted solely into a new conformer (SST), where the acid OH group is rotated by 180°. This conformational transformation was found to be photoreversible. Moreover, SST conformer, photoproduced in the N2 matrix, spontaneously converted to the most stable SSC form of glycolic acid, when the matrix was kept at cryogenic temperature and in the dark.

20.
J Phys Chem B ; 118(11): 2831-41, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24559084

RESUMO

Monomeric 5-methylcytosine (5mCyt) and 5-fluorocytosine (5FCyt) were studied using the matrix-isolation method. In 5mCyt and 5FCyt, the most stable form, dominating in low-temperature matrixes, is the amino-hydroxy (AH) tautomer. For both compounds, irradiation of the matrixes with near-IR laser light or with broadband near-IR or mid-IR light induces interconversions between the two rotamers of tautomer AH. In addition, for matrixes kept in darkness, a spontaneous tunneling conversion of the higher-energy hydroxy conformer (with the OH group directed toward the N3 atom) into the lower-energy form (OH directed toward N1) was occurring, with half-life time of 70 min for 5mCyt and 127 min for 5FCyt. These tunneling processes are much faster than that found for unsubstituted cytosine, where the half-life time is more than 30 h. UV irradiation of 5mCyt (at 316 nm) led to phototautomeric conversion of the amino-oxo form into the amino-hydroxy tautomer. Another phototransformation induced by irradiation of 5mCyt at 316 nm was the cleavage of the C-N bond in the amino-oxo form, resulting in generation of the open-ring conjugated isocyanate product. Irradiation of 5mCyt at shorter waves (λ ≤ 310 nm) induced the syn-anti photoisomerization within the imino-oxo forms of the compound. For matrix-isolated 5FCyt, the amount of the amino-oxo form was very small (with respect to the amino-hydroxy tautomer), while the imino-oxo isomers were not detected at all.


Assuntos
5-Metilcitosina/química , Simulação por Computador , Flucitosina/química , Raios Infravermelhos , Raios Ultravioleta , 5-Metilcitosina/efeitos da radiação , Flucitosina/efeitos da radiação , Isomerismo , Conformação Molecular , Estrutura Molecular , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...