Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38869530

RESUMO

In this work, we report on the synthesis and investigation of new hybrid multifunctional iron oxide nanoparticles (IONPs) coated by coumarin-bound copolymer, which combine magneto- or photothermal heating with luminescent thermometry. A series of amphiphilic block copolymers, including Coum-C11-PPhOx27-PMOx59 and Coum-C11-PButOx8-PMOx42 bearing luminescent and photodimerizable coumarin moiety, as well as coumarin-free PPhOx27-PMOx57, were evaluated for their utility as luminescent thermometers and for encapsulating spherical 26 nm IONPs. The obtained IONP@Coum-C11-PPhOx27-PMOx59 nano-objects are perfectly dispersible in water and able to provide macroscopic heating remotely triggered by an alternating current magnetic field (AMF) with a specific absorption rate (SAR) value of 240 W.g-1 or laser irradiation with a photothermal conversion efficiency of η = 68%. On the other hand, they exhibit temperature-dependent emission of coumarin offering the function of luminescent thermometer, which operates in the visible region between 20 °C and 60 °C in water displaying a maximal relative thermal sensitivity (Sr) of 1.53%·°C-1 at 60 °C.

2.
ACS Appl Mater Interfaces ; 16(22): 29077-29086, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771667

RESUMO

Gel polymer electrolytes (GPEs) represent a credible alternative to organic liquid electrolytes (LEs) for safer sodium metal batteries. As a compromise between solid polymer electrolytes and LEs, GPEs ensure a good ionic conductivity, improve the electrolyte/electrode interface, and prevent solvent leaks. Herein, a GPE based on acrylate-bifunctionalized polyethylene glycol chains mixed with an ether solvent (TEGDME) and a polyethylene glycol diacrylate (PEG600DA) in a 50/50 wt % ratio was prepared by ultraviolet photopolymerization. Sodium bis(fluorosulfonyl)imide salt (NaFSI) was added at different concentrations to study its interactions with the solvent and/or the cross-linked polymer. Infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and swelling ratio characterizations were combined to determine the physicochemical properties of the GPE. Complementary characterizations including electrochemical impedance spectroscopy, chronopotentiometry, and cyclic voltammetry allowed correlating the physicochemical properties of the GPE to its electrochemical performance. Then, improvements were obtained by careful combination of its components. The cross-linking agent allowed us to obtain a polymer matrix that traps the organic solvent and prevents leakage. Such a solvent inclusion reduces the rigidity of the membrane and lowers its viscosity, offering a room temperature ionic conductivity of 4.8 × 10-4 Ω-1 cm-1. The control of polymer's tortuosity leads to a stable cycling vs sodium metal over several hundred hours without increase of the polarization. Finally, optimization of the salt loading plays a major role in electrostatic cross-linking, leading to an improvement of the mechanical properties of the GPE without reducing its conductivity.

3.
Int J Pharm ; 658: 124186, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38701908

RESUMO

Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.


Assuntos
Cumarínicos , Oxazóis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fotoquimioterapia/métodos , Humanos , Cumarínicos/química , Oxazóis/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Células HCT116 , Sobrevivência Celular/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacologia , Nanopartículas/química , Portadores de Fármacos/química , Polímeros/química
4.
J Extracell Vesicles ; 12(12): e12386, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38050832

RESUMO

Extracellular vesicles (EVs) are naturally occurring nanoparticles released from all eucaryotic and procaryotic cells. While their role was formerly largely underestimated, EVs are now clearly established as key mediators of intercellular communication. Therefore, these vesicles constitute an attractive topic of study for both basic and applied research with great potential, for example, as a new class of biomarkers, as cell-free therapeutics or as drug delivery systems. However, the complexity and biological origin of EVs sometimes complicate their identification and therapeutic use. Thus, this rapidly expanding research field requires new methods and tools for the production, enrichment, detection, and therapeutic application of EVs. In this review, we have sought to explain how polymer materials actively contributed to overcome some of the limitations associated to EVs. Indeed, thanks to their infinite diversity of composition and properties, polymers can act through a variety of strategies and at different stages of EVs development. Overall, we would like to emphasize the importance of multidisciplinary research involving polymers to address persistent limitations in the field of EVs.


Assuntos
Vesículas Extracelulares , Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Biomarcadores , Comunicação Celular , Nanopartículas/uso terapêutico
5.
Langmuir ; 38(51): 16144-16155, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36516233

RESUMO

In the nanomedicine field, there is a need to widen the availability of nanovectors to compensate for the increasingly reported side effects of poly(ethene glycol). Nanovectors enabling cross-linking can further optimize drug delivery. Cross-linkable polyoxazolines are therefore relevant candidates to address these two points. Here we present the synthesis of coumarin-functionalized poly(2-alkyl-2-oxazoline) block copolymers, namely, poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazoline) and poly(2-methyl-2-oxazoline)-block-poly(2-butyl-2-oxazoline). The hydrophilic ratio and molecular weights were varied in order to obtain a range of possible behaviors. Their self-assembly after nanoprecipitation or film rehydration was examined. The resulting nano-objects were fully characterized by transmission electron microscopy (TEM), cryo-TEM, multiple-angle dynamic and static light scattering. In most cases, the formation of polymer micelles was observed, as well as, in some cases, aggregates, which made characterization more difficult. Cross-linking was performed under UV illumination in the presence of a coumarin-bearing cross-linker based on polymethacrylate derivatives. Addition of the photo-cross-linker and cross-linking resulted in better-defined objects with improved stability in most cases.


Assuntos
Poliaminas , Polímeros , Sistemas de Liberação de Medicamentos , Micelas
6.
Biomater Sci ; 10(10): 2681-2691, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35437543

RESUMO

The development of hydrogel materials in additive manufacturing displaying stiff and strong mechanical properties while maintaining high water uptake remains a great challenge. Taking advantage of the versatility of poly(oxazoline) (POx) chemistry and properties, we investigated in this article a new generation of POx hydrogels fabricated by stereolithography (SLA). A large range of photosensitive poly(2-methyl-2-oxazoline) resins were synthesized as hydrogel precursors for SLA photofabrication. Functionalization has been performed by direct di-methacrylation of POx terminal groups (MA2POxn) or by multi-methacrylation of poly(ethyleneimine) (PEI) units resulting from partial POx hydrolysis (MAmPOxn-PEIp). The length and the functionality of these UV-active macro-crosslinkers influence both the mechanical properties and the hydration behavior of the resulting hydrogels. The benefit of the layer-by-layer crosslinking of the POx resin during the vat photopolymerization allowed the fabrication of complex and well-defined 3D objects. The high-definition and high mechanical strength of these copolymers allow the fabrication of stiff and strong 3D hydrogels. The cytocompatibility test of the POx derivatives was conducted in solution and once the cells are encapsulated within 3D hydrogels. Finally, porous 3D scaffolds with gyroid architectures were built which provide opportunities for POx materials in tissue engineering applications.


Assuntos
Hidrogéis , Estereolitografia , Hidrogéis/química , Polímeros , Engenharia Tecidual/métodos , Alicerces Teciduais/química
7.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209231

RESUMO

Surfactants are crystallizing a certain focus for consumer interest, and their market is still expected to grow by 4 to 5% each year. Most of the time these surfactants are of petroleum origin and are not often biodegradable. Cashew Nut Shell Liquid (CNSL) is a promising non-edible renewable resource, directly extracted from the shell of the cashew nut. The interesting structure of CNSL and its components (cardanol, anacardic acid and cardol) lead to the synthesis of biobased surfactants. Indeed, non-ionic, anionic, cationic and zwitterionic surfactants based on CNSL have been reported in the literature. Even now, CNSL is absent or barely mentioned in specialized review or chapters talking about synthetic biobased surfactants. Thus, this review focuses on CNSL as a building block for the synthesis of surfactants. In the first part, it describes and criticizes the synthesis of molecules and in the second part, it compares the efficiency and the properties (CMC, surface tension, kraft temperature, biodegradability) of the obtained products with each other and with commercial ones.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Tensoativos/química , Técnicas de Química Sintética , Química Verde , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/farmacologia
8.
Biomacromolecules ; 22(9): 3873-3883, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34510908

RESUMO

The stereolithography process is a powerful additive manufacturing technology to fabricate scaffolds for regenerative medicine. Nevertheless, the quest for versatile inks allowing one to produce scaffolds with controlled properties is still unsatisfied. In this original article, we tackle this bottleneck by synthesizing a panel of photoprocessable hybrid copolymers composed of gelatin-graft-poly(trimethylene carbonate)s (Gel-g-PTMCn). We demonstrated that by changing the length of PTMC blocks grafted from gelatin, it is possible to tailor the final properties of the photofabricated objects. We reported here on the synthesis of Gel-g-PTMCn with various lengths of PTMC blocks grafted from gelatin using hydroxy and amino side groups of the constitutive amino acids. Then, the characterization of the resulting hybrid copolymers was fully investigated by quantitative NMR spectroscopy before rendering them photosensitive by methacrylation of the PTMC terminal groups. Homogeneous composition of the photocrosslinked hybrid polymers was demonstrated by EDX spectroscopy and electronic microscopy. To unravel the individual contribution of the PTMC moiety on the hybrid copolymer behavior, water absorption, contact angle measurements, and degradation studies were undertaken. Interestingly, the photocrosslinked materials immersed in water were examined using tensile experiments and displayed a large panel of behavior from hydrogel to elastomer-like depending on the PTMC/gel ratio. Moreover, the absence of cytotoxicity was conducted following the ISO 10993 assay. As a proof of concept, 3D porous objects were successfully fabricated using stereolithography. Those results validate the great potential of this panel of inks for tissue engineering and regenerative medicine.


Assuntos
Estereolitografia , Engenharia Tecidual , Dioxanos , Gelatina , Polímeros , Alicerces Teciduais
9.
Polymers (Basel) ; 13(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467051

RESUMO

Semi-crystalline poly(trimethylene carbonate) (PTMC) can be efficiently prepared by ring-opening polymerization (ROP) initiated by amine using various catalysts. More promising results were reached with the one-step process of stannous octanoate unlike the two-step one-pot reaction using TBD and MSA catalysts. The ROP-amine of TMC consists in a simple isocyanate free process to produce polycarbonate-urethanes, compatible with the large availability of amines ranging from mono- to multifunctional until natural amino acids. ROP-amine of TMC leads to urethane bonds monitored by FTIR spectroscopy. The relationship between the nature of amines and the crystallinity of PTMC was discussed through X-ray diffraction and thermal studies by DSC and TGA. The impact of the crystallinity was also demonstrated on the mechanical properties of semi-crystalline PTMC in comparison to amorphous PTMC, synthesized by ROP initiated by alcohol. The semi-crystalline PTMC synthesized by ROP-amine opens many perspectives.

10.
J Mater Chem B ; 7(32): 4973-4982, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31411611

RESUMO

An amphiphilic polymer (CmPOX) based on poly(2-methyl-2-oxazoline) linked to a hydrophobic part composed of an aliphatic chain ending with a photo-active coumarin group has been synthesized. It exhibits the ability of forming small polymeric self-assemblies, typically of ca. 10 nm in size, which were characterized by TEM, cryo-TEM and DLS. The nanocarriers were further formulated to yield photo-crosslinked systems by dimerization of coumarin units of coumarin-functionalized poly(methyl methacrylate) (CmPMMA) and CmPOX. The formed vectors were used to encapsulate Pheophorbide a, a known photosensitizer for photodynamic therapy. Cytotoxicity as well as phototoxicity experiments performed in vitro on human tumor cells revealed the great potential of these nanovectors for photodynamic therapy.


Assuntos
Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Oxazóis/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Polímeros/química , Clorofila/análogos & derivados , Clorofila/química , Clorofila/farmacologia , Células HCT116 , Humanos , Polimetil Metacrilato/química
11.
Int J Pharm ; 567: 118478, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260782

RESUMO

To encapsulate and deliver poorly water-soluble drugs, castor oil/silica hybrid microparticles (HMP)s were synthesized. Green chemistries were used to silylate the oil and further cross-link it into solid microparticles by sol-gel reaction. Silylated castor oils (ICO)s at various silylation ratios were prepared and allowed the solubilization of ibuprofen at several concentrations up to 16 wt%. The HMPs were formulated by ThermoStabilized Emulsion (TSE) process which permits to "freeze" the oil-in-water emulsion while the sol-gel reaction occurs. The hybrid mineral/organic composition and the morphology (spherical shape and micrometric size) of these HMPs were determined by complementary technics (SEM, TGA, EDX, 29Si NMR and FTIR spectroscopies). The HMPs reached a good ibuprofen loading efficiency regardless to the formulation used while the release kinetics in simulated oral administration exhibited a tunable release during 3 h according to the silylation ratio. The ibuprofen rate also influenced its own amorphous or crystalline character within the HMPs. For subcutaneous conditions, ibuprofen release took place over 15 days. Finally, biodegradability assays in simulated digestion medium suggested a surface-limited hydrolysis of the particles and cytocompatibility studies on NIH-3T3 and Caco-2 cells demonstrated an excellent cellular viability.


Assuntos
Óleo de Rícino/administração & dosagem , Portadores de Fármacos/administração & dosagem , Dióxido de Silício/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Células CACO-2 , Óleo de Rícino/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Camundongos , Células NIH 3T3 , Dióxido de Silício/química , Solubilidade , Água/química
12.
Biomacromolecules ; 20(1): 4-26, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30273485

RESUMO

The increasing price of barrels of oil, global warming, and other environmental problems favor the use of renewable resources to replace the petroleum-based polymers used in various applications. Recently, fatty acids (FAs) and their derivatives have appeared among the most promising candidates to afford novel and innovative bio-based (co)polymers because of their ready availability, their low toxicity, and their high versatility. However, the current literature mostly focused on FA-based polymers prepared by condensation polymerization or oxypolymerization, while only a few works have been devoted to radical polymerization due to the low reactivity of FAs through radical process. Thus, the aim of this Review is to give an overview of (i) the most common synthetic pathways reported in the literature to provide suitable monomers from FAs and their derivatives for radical polymerization, (ii) the available radical processes to afford FA-based (co)polymers, and (iii) the different applications in which FA-based (co)polymers have been used since the past few years.


Assuntos
Ácidos Graxos/química , Ácidos Polimetacrílicos/síntese química , Polimerização
13.
Soft Matter ; 13(26): 4569-4579, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28613327

RESUMO

Vegetable oil based hybrid films were developed thanks to a novel solvent- and heating-free method at the air-water interface using silylated castor oil cross-linked via a sol-gel reaction. To understand the mechanism of the hybrid film formation, the reaction kinetics was studied in detail by using complementary techniques: rheology, thermogravimetric analysis, and infrared spectroscopy. The mechanical properties of the final films were investigated using nano-indentation, whereas their structure was studied using a combination of wide-angle X-ray scattering, electron diffraction, and atomic force microscopy. We found that solid and transparent films form in 24 hours and, by changing the silica precursor to castor oil ratio, their mechanical properties are tunable in the MPa-range by about a factor of twenty. In addition to that, a possible optimization of the cross-linking reaction with different catalysts was explored, and finally cytotoxicity tests were performed on fibroblasts proving the absence of film toxicity. The results of this work pave the way to a straightforward synthesis of castor-oil films with tunable mechanical properties: hybrid films cross-linked at the air-water interface combine an easy and cheap spreading protocol with the features of their thermal history optimized for possible future micro/nano drug loading, thus representing excellent candidates for the replacement of non-environmentally friendly petroleum-based materials.

14.
Soft Matter ; 13(25): 4507-4519, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28584886

RESUMO

A series of amphiphilic photo-responsive heterografted copolymers have been successfully synthesized. The random copolymers were composed of a methacrylate backbone, with various compositions of hydrophilic oligomeric 2-methyl-2-oxazoline side chains (OMOx) and hydrophobic long alkyl chains terminated by a coumarin moiety (Cm). Using dynamic (DLS) and static light scattering (SLS), and transmission electron microscopy (TEM), their self-assembling behavior was studied in water using the nanoprecipitation method. Depending on the system, one, two or three particle size distributions co-exist in solution. However, DLS measurements showed that monomodal and slightly polydisperse self-assemblies were obtained with the more hydrophobic copolymers (i.e., 85% of hydrophobic monomers with a long alkyl chain terminated by a coumarin moiety (MCm) per molecule) with hydrodynamic diameters ranging from ca. 130 to 300 nm. Morphological information on these self-assembly structures was obtained using SLS: a Gaussian behavior has thus been evidenced. Finally, these heterografted copolymers were illuminated using UV light at λ = 350 nm inducing photo-crosslinking of the coumarin units. The influence of UV illumination on the thus-formed nanoparticles was investigated by carrying out complementarily DLS-measurements and UV spectroscopy.

15.
Macromol Rapid Commun ; 33(19): 1600-12, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22760956

RESUMO

Polyoxazolines (POx) are increasingly being studied as polymeric building blocks due to the possibility of affording tunable properties. Additionally, as the biocompatibility and stealth behavior of POx are similar to that of poly(ethylene glycol) (PEG), it has become challenging to develop polyoxazoline-based (co)polymers. Even if POx have a lot of advantages, they also show an important drawback, as it has been impossible, to date, to prepare high-molecular-weight polyoxazolines with a low polydispersity index. Thus, it appears important that they be judiciously functionalized. This review covers the multiple ways that polyoxazolines can be functionalized. The use of functional initiators, functional terminating agents, and 2-R-2-oxazolines with an R functional side group is detailed. In conclusion, some perspectives on POx functionalizations are also reported, with functions permitting selective "click" reactions.


Assuntos
Oxazóis/química , Boranos/química , Química Click , Reação de Cicloadição , Polietilenoglicóis/química
16.
Chem Commun (Camb) ; 48(23): 2879-81, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22311101

RESUMO

Well-defined graft copolymers were obtained using a copper-catalysed azide-alkyne Huisgen's cycloaddition click reaction from both biocompatible and non-toxic poly(ε-caprolactone) and poly(2-methyl-2-oxazoline) homopolymers. Resulting amphiphilic copolymers proved to form micelles that could be used as potential drug carriers.


Assuntos
Portadores de Fármacos/química , Poliaminas/química , Poliésteres/química , Polímeros/síntese química , Triazóis/química , Alcinos/química , Azidas/química , Catálise , Química Click , Cobre/química , Micelas , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...