Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 195: 115441, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683393

RESUMO

Nitrogen (N) loading can affect estuarine food webs through alteration of primary producers. In the Indian River Lagoon (IRL), Florida there has been long-term N enrichment, worsening phytoplankton blooms, large-scale macroalgal blooms, and catastrophic seagrass losses. To investigate how N enrichment affects higher trophic levels and food webs in the IRL, nutrient availability was compared to primary producer and faunal stable N (δ15N) isotope values. Seawater samples were collected in the IRL for dissolved nutrient, chlorophyll-a, and particulate organic matter δ15N analyses. Macrophytes and fauna were also collected for δ15N analyses. Throughout the IRL, N was elevated but was highest in the northern IRL and Banana River Lagoon. δ15N was enriched in these segments for most samples to levels characteristic of human-waste impacted estuaries. Variability in δ15N among lagoon segments suggests a low level of trophic connectivity. Decreasing N loading to the IRL and other eutrophic estuaries may help improve resiliency.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Humanos , Nitrogênio/análise , Clorofila A/análise , Eutrofização
2.
Mar Pollut Bull ; 193: 115041, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356131

RESUMO

In Florida's Indian River Lagoon (IRL), anthropogenic eutrophication has resulted in harmful algal blooms and catastrophic seagrass losses. Hoping to improve water quality, policy makers enacted fertilizer bans, assuming that this would reduce the nitrogen (N) load. To assess the effectiveness of these bans, seawater and macroalgal samples were collected at 20 sites "pre" and ~ five-years "post" bans and analyzed to determine concentrations of dissolved nutrients and stable nitrogen isotope values (δ15N). Higher concentrations of ammonium and nitrate were observed post-ban and macroalgal δ15N values increased. A comparison of nutrient concentrations and δ15N between brown tide (Aureoumbra lagunensis) blooms indicated that the post-ban bloom was more strongly N-enriched with higher δ15N values than the pre-ban bloom, which had depleted values in the range of fertilizers. These data indicate a primary role of human waste influence in the IRL, suggesting that current management actions have been insufficient at mitigating eutrophication.


Assuntos
Fertilizantes , Proliferação Nociva de Algas , Humanos , Florida , Rios , Eutrofização , Nitrogênio/análise , Nutrientes
3.
Sci Total Environ ; 879: 162716, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36921859

RESUMO

The coastal communities of Lee County, Florida, USA have grown rapidly since the 1970s. In this county, drainage ditches, canals, creeks, and the Caloosahatchee River Estuary often have high concentrations of nutrients and bacteria limiting their designated uses. Septic systems have previously been identified as a major pollution source in some areas of Lee County; therefore, this study sought to identify the extent of this issue throughout the county. To accomplish this, surface water samples were collected at 25 ditch, creek, or canal sites suspected of human waste contamination from septic systems in various drainage basins throughout Lee County during January 2020-January 2021. Water samples were analyzed for nutrients, dual stable nitrate isotopes (δ15N-NO3-, δ18O-NO3-), fecal indicator bacteria (enterococci, Escherichia coli), a molecular tracer of human waste (HF183), and chemical tracers of human waste (the artificial sweetener sucralose, pharmaceuticals). Particulate organic matter (POM) and macrophytes were also collected and analyzed for stable carbon (δ13C) and nitrogen (δ15N) isotopes, as well as elemental composition (C:N:P). To broaden the assessment of stable isotope values and C:N:P, archived macrophyte samples from 2019 were also included in analyses. Ammonium concentrations were high (> 4.3 µM) in 55 % of samples. Fecal bacteria were high in 66 % of samples. HF183 was detected in 50 % of samples and positively correlated with enterococci (r = 0.32). Sucralose concentrations were high (> 380 ng/L) in 54 % of samples, while carbamazepine was detected in 40 % of samples. Human waste N sources were indicated by δ15N > 3.00 ‰ at 44 % of sites by δ15N-NO3-, 68 % of sites by POM, and at 100 % of sites where macrophyte samples were collected. This large-scale study provides evidence of widespread human waste pollution throughout Lee County and can help guide infrastructure improvements to promote sustainable development. These findings should be applicable to urbanized regions globally that are experiencing declines in water quality and harmful algal blooms due to development with inadequate infrastructure.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Florida , Nitrogênio/análise , Qualidade da Água , Rios/química , Bactérias , Enterococcus , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise , Nitratos/análise
4.
Water Sci Technol ; 86(3): 432-444, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960828

RESUMO

Wastewater management is a critical issue globally. In Florida, the importance of this issue is heightened by the proximity to sensitive ecosystems. Distributed wastewater treatment units (DWTU) are a recent, state-approved alternative to septic system conversions to centralized sewer infrastructure. In this study, the performance of a DWTU was tested at a new residence in Lake Hamilton, FL. A monitoring well was installed downgradient of the DWTU absorption field to establish baseline groundwater conditions prior to occupation of the residence. The residence was occupied, after which groundwater, DWTU influent, and effluent samples were collected. Many effluent parameters significantly decreased compared to influent, including ammonia (NH3; 97%), total Kjeldahl nitrogen (TKN; 95%), total nitrogen (TN; 88%), the TN:TP ratio (84%), fecal coliforms (92%), carbonaceous biochemical oxygen demand (CBOD; 96%), and total suspended solids (TSS; 96%). In the groundwater, nutrient concentrations initially increased compared to the baseline data, but eventually decreased, demonstrating that the DWTU was effective at improving quality of wastewater effluent. These systems could be especially effective in sensitive areas where advanced wastewater treatment has been mandated or is needed.


Assuntos
Águas Residuárias , Purificação da Água , Ecossistema , Florida , Nitrogênio/análise , Fósforo/análise , Eliminação de Resíduos Líquidos
5.
Sci Total Environ ; 837: 155319, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452738

RESUMO

As human population growth has expanded in Southwest Florida, water quality has become degraded with an increased occurrence of harmful algal blooms (HABs). Red tide (Karenia brevis) originating offshore, intensifies in nearshore waters along Florida's Gulf Coast, and blue-green algae (Microcystis spp.) originating in Lake Okeechobee is discharged into the Caloosahatchee River. These HABs could be enhanced by anthropogenic nitrogen (N) and phosphorus (P) from adjacent watersheds. North Fort Myers is a heavily developed, low-lying city on the Caloosahatchee River Estuary serviced by septic systems with documented nutrient and bacterial pollution. To identify sources of pollution within North Fort Myers and determine connections with downstream HABs, this multiyear (2017-2020) study examined septic system- groundwater- surface water couplings through the analysis of water table depth, nutrients (N, P), fecal indicator bacteria (FIB), molecular markers (HF183, GFD, Gull2), chemical tracers (sucralose, pharmaceuticals, herbicides, pesticides), stable isotopes of groundwater (δ15N-NH4, δ15N-NO3) and particulate organic matter (POM; δ15N, δ13C), and POM elemental composition (C:N:P). POM samples were also collected during K. brevis and Microcystis spp. HAB events. Most (>80%) water table depth measurements were too shallow to support septic system functioning (<1.07 m). High concentrations of NH4+ and NOx, up to 1094 µM and 482 µM respectively, were found in groundwater and surface water. δ15N values of groundwater (+4.7‰) were similar to septic effluent (+4.9‰), POM (+4.7‰), and downstream HABs (+4.8 to 6.9‰), indicating a human waste N source. In surface water, FIB were elevated and HF183 was detected, while in groundwater and surface water sucralose, carbamazepine, primidone, and acetaminophen were detected. These data suggest that groundwater and surface water in North Fort Myers are coupled and contaminated by septic system effluent, which is negatively affecting water quality and contributing to the maintenance and intensification of downstream HABs.


Assuntos
Água Subterrânea , Microcystis , Poluentes Químicos da Água , Monitoramento Ambiental , Florida , Proliferação Nociva de Algas , Humanos , Material Particulado/análise , Poluentes Químicos da Água/análise , Qualidade da Água
6.
Mar Pollut Bull ; 171: 112686, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34271509

RESUMO

Macroalgal blooms are increasing on the Belize Barrier Reef (BBR) as scleractinian coral cover declines. Although some have attributed this to reduced grazing, the role of land-based nutrient pollution has not been assessed. Nutrient enrichment was quantified through macroalgal tissue analysis from Belize City to the offshore fore reef and at several central BBR lagoon sites. These recent data were compared to baseline data from the 1980s. Significant nearshore-to-offshore gradients of %N, %P and δ13C in macroalgae all indicated land-based sources of these nutrients. Macroalgal δ15N values were generally enriched in nearshore waters where values matched those reported for human sewage. Notably, the N:P ratios of recent macroalgae measurements were elevated at all sites, more than two-fold higher than values from the 1980s (~30: 1 to 70:1). These results support the hypothesis that nitrogen enrichment from land-based sources has increased phosphorus limitation driving macroalgal blooms and coral stress on the BBR.


Assuntos
Antozoários , Alga Marinha , Animais , Belize , Recifes de Corais , Humanos , Nitrogênio/análise
7.
Harmful Algae ; 103: 102012, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33980451

RESUMO

Harmful algal blooms that can produce toxins are common in the Indian River Lagoon (IRL), which covers ~250 km of Florida's east coast. The current study assessed the dynamics of microcystins and saxitoxin in six segments of the IRL: Banana River Lagoon (BRL), Mosquito Lagoon (ML), Northern IRL (NIRL), Central IRL (CIRL), Southern IRL (SIRL), and the St. Lucie Estuary (SLE). Surface water samples (n = 40) collected during the 2018 wet and 2019 dry season were analyzed to determine associations between toxins and temperature, salinity, pH, oxygen saturation, concentrations of dissolved nutrients and chlorophyll-a, presence of biosynthetic genes for toxins, relative abundance of planktonic species, and composition of the microbial community. The potential toxicity of samples was assessed using multiple mammalian cell lines. Enzyme-Linked Immunosorbent Assays were used to determine concentrations of microcystins and saxitoxin. Overall, the microcystins concentration ranged between 0.01-85.70 µg/L, and saxitoxin concentrations ranged between 0.01-2.43 µg/L across the IRL. Microcystins concentrations were 65% below the limit of quantification (0.05 µg/L), and saxitoxin concentrations were 85% below the limit of detection (0.02 µg/L). Microcystins concentrations were higher in the SLE, while saxitoxin was elevated in the NIRL and BRL. Cytotoxicity related to the presence of microcystins was seen in the SLE during the wet season. No significant patterns between cytotoxicity and saxitoxin were identified. Dissolved nutrients were identified as the most highly related parameters, explaining 53% of microcystin and 47% of saxitoxin variability. Multivariate models suggested cyanobacteria, flagellates, ciliates, and diatoms as the subset of microorganisms whose abundances were maximally correlated with saxitoxin and microcystins concentrations. Lastly, biosynthetic genes for microcystins were detected in the SLE and for saxitoxin in the BRL and NIRL. These results highlight the synergistic roles environmental and biological parameters play in influencing the dynamics of toxin production by harmful algae in the IRL.


Assuntos
Microcistinas , Rios , Animais , Florida , Saxitoxina
9.
Sci Total Environ ; 699: 134068, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31683214

RESUMO

Historically, extensive seagrass meadows were common throughout the Indian River Lagoon (IRL) in east-central Florida, USA. Between 2011 and 2017, widespread catastrophic seagrass losses (~95%) occurred in the IRL following unprecedented harmful algal blooms (HABs), including persistent brown tides (Aureoumbra lagunensis). Little is known about how dissolved nutrients and chlorophyll a are related to light limitation or how biochemical factors, such as the elemental composition (C:N:P) and stable isotope signatures (δ13C, δ15N), of seagrasses within the IRL relate to coverage. Accordingly, we conducted a survey from 2013 to 2015 at 20 sites to better understand these relationships. Results showed a negative correlation between DIN and salinity, indicating freshwater inputs as a DIN source. Seawater N:P ratios and chlorophyll a concentrations were higher in the urbanized, poorly-flushed northern IRL segments. Kd values were higher in the wet season and often exceeded seagrass light requirements (0.8 m-1) for restoration, demonstrating light limitation. Species distribution varied by location. Halodule wrightii was ubiquitous, whereas Syringodium filiforme was not found in the northernmost segments. Thalassia testudinum was only present in the two southernmost segments that had the lowest TDN and highest light availability (Kd). Blade %N and %P also frequently exceeded critical values of 1.8% and 0.2%, respectively, especially in the northern segments. Further, δ15N was positively correlated with ammonium, suggesting wastewater as a major N source. The δ13C values indicated a trend of increasing light limitation from south to north, which helps explain the recent catastrophic loss of seagrasses in the northern IRL. Overall, elemental composition reflected high N-availability and seagrass species distributions were relatable to spatial trends in N and light limitation. For effective restoration, resource managers must reduce N-loading to the IRL to diminish HABs and increase light availability. Regular biochemical monitoring of seagrass tissue should also be implemented during restoration efforts.


Assuntos
Ecossistema , Estuários , Rios , Poluentes Químicos da Água/análise , Alismatales , Clorofila A , Monitoramento Ambiental , Florida , Nitrogênio/análise , Fósforo/análise , Água do Mar , Urbanização
10.
Harmful Algae ; 70: 1-22, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29169565

RESUMO

Nutrient enrichment is a significant global-scale driver of change in coastal waters, contributing to an array of problems in coastal ecosystems. The St. Lucie Estuary (SLE) in southeast Florida has received national attention as a result of its poor water quality (elevated nutrient concentrations and fecal bacteria counts), recurring toxic Microcystis aeruginosa blooms, and its proximity to the northern boundary of tropical coral species in the United States. The SLE has an artificially large watershed comprised of a network of drainage canals, one of which (C-44) is used to lower the water level in Lake Okeechobee. Public attention has primarily been directed at nutrient inputs originating from the lake, but recent concern over the importance of local watershed impacts prompted a one-year watershed study designed to investigate the interactions between on-site sewage treatment and disposal systems (OSTDS or septic systems), groundwaters, and surface waters in the SLE and nearshore reefs. Results provided multiple lines of evidence of OSTDS contamination of the SLE and its watershed: 1) dissolved nutrients in groundwaters and surface waters were most concentrated adjacent to two older (pre-1978) residential communities and the primary canals, and 2) sucralose was present in groundwater at residential sites (up to 32.0µg/L) and adjacent surface waters (up to 5.5µg/L), and 3) δ15N values in surface water (+7.5 o/oo), macroalgae (+4.4 o/oo) and phytoplankton (+5.0 o/oo) were within the published range (>+3 o/oo) for sewage N and similar to values in OSTDS-contaminated groundwaters. Measured δ15N values in M. aeruginosa became increasingly enriched during transport from the C-44 canal (∼5.8 o/oo) into the mid-estuary (∼8.0 o/oo), indicating uptake and growth on sewage N sources within the urbanized estuary. Consequently, there is a need to reduce N and P loading, as well as fecal loading, from the SLE watershed via septic-to-sewer conversion projects and to minimize the frequency and intensity of the releases from Lake Okeechobee to the SLE via additional water storage north of the lake. These enhancements would improve water quality in both the SLE and Lake Okeechobee, reduce the occurrence of toxic harmful algal blooms in the linked systems, and improve overall ecosystem health in the SLE and downstream reefs.


Assuntos
Água Subterrânea/microbiologia , Proliferação Nociva de Algas , Lagos/microbiologia , Microcystis/crescimento & desenvolvimento , Ecossistema , Estuários , Florida , Água Subterrânea/análise , Lagos/análise , Microcystis/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Fósforo/análise , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Poluição da Água/análise , Qualidade da Água
12.
Ambio ; 43(3): 361-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24114070

RESUMO

Long-term monitoring data show that hard coral cover on the Great Barrier Reef (GBR) has reduced by >70 % over the past century. Although authorities and many marine scientists were in denial for many years, it is now widely accepted that this reduction is largely attributable to the chronic state of eutrophication that exists throughout most of the GBR. Some reefs in the far northern GBR where the annual mean chlorophyll a (Chl a) is in the lower range of the proposed Eutrophication Threshold Concentration for Chl a (~0.2-0.3 mg m⁻³) show little or no evidence of degradation over the past century. However, the available evidence suggests that coral diseases and the crown-of-thorns starfish will proliferate in such waters and hence the mandated eutrophication Trigger values for Chl a (~0.4-0.45 mg m⁻³) will need to be decreased to ~0.2 mg m⁻³ for sustaining coral reef communities.


Assuntos
Clorofila/química , Recifes de Corais , Monitoramento Ambiental/métodos , Eutrofização , Animais , Antozoários , Austrália , Clorofila A , Oceano Pacífico , Fósforo , Fatores de Tempo , Poluição da Água
13.
Environ Sci Technol ; 44(3): 874-80, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20055401

RESUMO

Stable nitrogen isotope (delta(15)N) analysis has proven an effective "fingerprint" of sewage contamination in coral reef environments; however, short-term variability in nitrogen cycling and isotopic fractionation may obscure long-term trends. Here, we examine delta(15)N signatures in the organic endoskeletons of long-lived (20-40 years) gorgonian corals. Specimens were collected from relatively pristine reefs off Green Turtle Cay, Bahamas, and from reefs off southeast Florida heavily impacted by multiple sources of anthropogenic nitrogen. The delta(15)N of the most recently grown skeleton (branch tips) ranged from +2 to +3 per thousand at Green Turtle Cay, and +4.5 to +10 per thousand off Florida. These values closely match the delta(15)N of macroalgae collected from the same locations, indicating that gorgonian corals are isotopically similar to primary producers, and therefore suitable for assessing sources of dissolved inorganic nitrogen. Differences in the delta(15)N between younger and older skeleton indicated an overall decline of -0.34 +/- 0.06 per thousand (1 s.e) over the last 20 - 40 years at Green Turtle Cay, reflecting a possible increase in nitrogen fixation and/or atmospheric deposition of anthropogenic nitrogen. Off southeast Florida, there was an overall increase in delta(15)N over the same time period, reflecting increasing wastewater discharges from the rapidly growing population. These results highlight the usefulness of delta(15)N recorded in gorgonians and other long-lived organisms in assessing spatiotemporal patterns of nitrogen sources to coastal marine environments.


Assuntos
Antozoários/fisiologia , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Poluição Ambiental , Nitrogênio/química , Animais , Bahamas , Poluentes Ambientais/metabolismo , Florida , Nitrogênio/metabolismo , Poluição Química da Água
14.
Mar Pollut Bull ; 60(3): 334-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20034641

RESUMO

Tobago's fringing coral reefs (FR) and Buccoo Reef Complex (BRC) can be affected locally by wastewater and stormwater, and regionally by the Orinoco River. In 2001, seasonal effects of these inputs on water-column nutrients and phytoplankton (Chl a), macroalgal C:N:P and delta(15)N values, and biocover at FR and BRC sites were examined. Dissolved inorganic nitrogen (DIN, particularly ammonium) increased and soluble reactive phosphorus (SRP) decreased from the dry to wet season. Wet season satellite and Chl a data showed that Orinoco runoff reaching Tobago contained chromophoric dissolved organic matter (CDOM) but little Chl a, suggesting minimal riverine nutrient transport to Tobago. C:N ratios were lower (16 vs. 21) and macroalgal delta(15)N values higher (6.6 per thousand vs. 5.5 per thousand) in the BRC vs. FR, indicating relatively more wastewater N in the BRC. High macroalgae and low coral cover in the BRC further indicated that better wastewater treatment could improve the health of Tobago's coral reefs.


Assuntos
Antozoários/crescimento & desenvolvimento , Ecossistema , Eutrofização , Água do Mar/química , Poluentes da Água/análise , Animais , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Eucariotos/química , Nitrogênio/análise , Fósforo/análise , Estações do Ano , Esgotos/análise , Trinidad e Tobago , Poluição da Água/prevenção & controle , Poluição da Água/estatística & dados numéricos
15.
Mar Pollut Bull ; 58(6): 793-802, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19286230

RESUMO

While coral reefs decline, scientists argue, and effective strategies to manage land-based pollution lag behind the extent of the problem. There is need for objective, cost-effective, assessment methods. The measurement of stable nitrogen isotope ratios, delta(15)N, in tissues of reef organisms shows promise as an indicator of sewage stress. The choice of target organism will depend upon study purpose, availability, and other considerations such as conservation. Algae are usually plentiful and have been shown faithfully to track sewage input. The organic matrix of bivalve shells can provide time series spanning, perhaps, decades. Gorgonians have been shown to track sewage, and can provide records potentially centuries-long. In areas where baseline data are lacking, which is almost everywhere, delta(15)N in gorgonians can provide information on status and trends. In coral tissue, delta(15)N combined with insoluble residue determination can provide information on both sewage and sediment stress in areas lacking baseline data. In the developed world, delta(15)N provides objective assessment in a field complicated by conflicting opinions. Sample handling and processing are simple and analysis costs are low. This is a method deserving widespread application.


Assuntos
Antozoários/química , Ecossistema , Isótopos de Nitrogênio/análise , Esgotos/análise , Poluentes da Água/análise , Animais , Países em Desenvolvimento , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Oceanos e Mares , Estresse Fisiológico
16.
Ambio ; 36(5): 416-24, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17847808

RESUMO

The results from the multimillion dollar Enrichment of Nutrients on Coral Reefs Experiment (ENCORE) on One Tree Island Reef (OTIR) suggest that increased nutrient loads to coral reefs will have little or no effect on the algal growth rates and, hence, on the associated effects that increased algal growth might have on the functioning and stability of coral reefs. However, a comparison of the concentrations of nutrients within the OTIR lagoon with the proposed nutrient threshold concentrations (NTC) for coral reefs suggests that all sites, including the control sites, were saturated with nutrients during ENCORE, and, hence, one would not expect to get any differences between treatments in the algal-growth related measurements. Thus, ENCORE results provide strong support for the proposed NTCs and support the ecological principle that algal productivity and, consequently, the functioning of coral reefs are sensitive to small changes in the background concentrations of nutrients. The principal conclusion of ENCORE, namely that the addition of nutrients did not cause the "pristine" OTIR to convert from coral communities to algal dominated reefs, is contrary to the fact that there was prolific macroalgal growth on the walls and crests of the experimental microatolls by the end of ENCORE.


Assuntos
Cnidários/efeitos dos fármacos , Modelos Teóricos , Nitrogênio/farmacologia , Fósforo/farmacologia , Poluentes Químicos da Água/farmacologia , Animais , Bivalves/efeitos dos fármacos , Bivalves/metabolismo , Cnidários/metabolismo , Crustáceos/efeitos dos fármacos , Crustáceos/metabolismo , Eucariotos/efeitos dos fármacos , Eucariotos/metabolismo , Peixes , Biologia Marinha , Nitrogênio/farmacocinética , Fósforo/farmacocinética , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Dinâmica Populacional , Queensland , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...