Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; PP2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042541

RESUMO

Independent component analysis (ICA) is now a widely used solution for the analysis of multi-subject functional magnetic resonance imaging (fMRI) data. Independent vector analysis (IVA) generalizes ICA to multiple datasets (multi-subject data). Along with higher-order statistical information in ICA, it leverages the statistical dependence across the datasets as an additional type of statistical diversity. As such, IVA preserves variability in the estimation of single-subject maps but its performance might suffer when the number of datasets increases. Constrained IVA is an effective way to bypass computational issues and improve the quality of separation by incorporating available prior information. Existing constrained IVA approaches often rely on user-defined threshold values to define the constraints. However, an improperly selected threshold can have a negative impact on the final results. This paper proposes two novel methods for constrained IVA: one using an adaptive-reverse scheme to select variable thresholds for the constraints and a second one based on a threshold-free formulation by leveraging the unique structure of IVA. Notably, the proposed algorithms do not require all components to be constrained, utilizing free components to model interferences and components that might not be in the reference set. We demonstrate that our solutions provide an attractive solution to multi-subject fMRI analysis both by simulations and through analysis of resting state fMRI data collected from 98 subjects - the highest number of subjects ever used by IVA algorithms. Our results show that both proposed approaches obtain significantly better separation quality and model match while providing computationally efficient and highly reproducible solutions.

2.
Int J Neural Syst ; 33(12): 2350062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822240

RESUMO

Brain-computer interfaces (BCIs) establish a direct communication channel between the human brain and external devices. Among various methods, electroencephalography (EEG) stands out as the most popular choice for BCI design due to its non-invasiveness, ease of use, and cost-effectiveness. This paper aims to present and compare the accuracy and robustness of an EEG system employing one or two channels. We present both hardware and algorithms for the detection of open and closed eyes. Firstly, we utilize a low-cost hardware device to capture EEG activity from one or two channels. Next, we apply the discrete Fourier transform to analyze the signals in the frequency domain, extracting features from each channel. For classification, we test various well-known techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Decision Tree (DT), or Logistic Regression (LR). To evaluate the system, we conduct experiments, acquiring signals associated with open and closed eyes, and compare the performance between one and two channels. The results demonstrate that employing a system with two channels and using SVM, DT, or LR classifiers enhances robustness compared to a single-channel setup and allows us to achieve an accuracy percentage greater than 95% for both eye states.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Encéfalo , Algoritmos , Máquina de Vetores de Suporte
3.
Sensors (Basel) ; 23(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37300060

RESUMO

Joint blind source separation (JBSS) has wide applications in modeling latent structures across multiple related datasets. However, JBSS is computationally prohibitive with high-dimensional data, limiting the number of datasets that can be included in a tractable analysis. Furthermore, JBSS may not be effective if the data's true latent dimensionality is not adequately modeled, where severe overparameterization may lead to poor separation and time performance. In this paper, we propose a scalable JBSS method by modeling and separating the "shared" subspace from the data. The shared subspace is defined as the subset of latent sources that exists across all datasets, represented by groups of sources that collectively form a low-rank structure. Our method first provides the efficient initialization of the independent vector analysis (IVA) with a multivariate Gaussian source prior (IVA-G) specifically designed to estimate the shared sources. Estimated sources are then evaluated regarding whether they are shared, upon which further JBSS is applied separately to the shared and non-shared sources. This provides an effective means to reduce the dimensionality of the problem, improving analyses with larger numbers of datasets. We apply our method to resting-state fMRI datasets, demonstrating that our method can achieve an excellent estimation performance with significantly reduced computational costs.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Distribuição Normal
4.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146136

RESUMO

Using implicit responses to determine consumers' response to different stimuli is becoming a popular approach, but research is still needed to understand the outputs of the different technologies used to collect data. During the present research, electroencephalography (EEG) responses and self-reported liking and emotions were collected on different stimuli (odor, taste, flavor samples) to better understand sweetness perception. Artificial intelligence analytics were used to classify the implicit responses, identifying decision trees to discriminate the stimuli by activated sensory system (odor/taste/flavor) and by nature of the stimuli ('sweet' vs. 'non-sweet' odors; 'sweet-taste', 'sweet-flavor', and 'non-sweet flavor'; and 'sweet stimuli' vs. 'non-sweet stimuli'). Significant differences were found among self-reported-liking of the stimuli and the emotions elicited by the stimuli, but no clear relationship was identified between explicit and implicit data. The present research sums interesting data for the EEG-linked research as well as for EEG data analysis, although much is still unknown about how to properly exploit implicit measurement technologies and their data.


Assuntos
Odorantes , Paladar , Inteligência Artificial , Árvores de Decisões , Eletroencefalografia , Humanos , Odorantes/análise , Percepção , Paladar/fisiologia
5.
Sensors (Basel) ; 21(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810122

RESUMO

Human-Machine Interfaces (HMI) allow users to interact with different devices such as computers or home elements. A key part in HMI is the design of simple non-invasive interfaces to capture the signals associated with the user's intentions. In this work, we have designed two different approaches based on Electroencephalography (EEG) and Electrooculography (EOG). For both cases, signal acquisition is performed using only one electrode, which makes placement more comfortable compared to multi-channel systems. We have also developed a Graphical User Interface (GUI) that presents objects to the user using two paradigms-one-by-one objects or rows-columns of objects. Both interfaces and paradigms have been compared for several users considering interactions with home elements.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletroculografia , Humanos , Interface Usuário-Computador
6.
Int J Neural Syst ; 30(7): 2050018, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32362151

RESUMO

In this work, we develop open source hardware and software for eye state classification and integrate it with a protocol for the Internet of Things (IoT). We design and build the hardware using a reduced number of components and with a very low-cost. Moreover, we propose a method for the detection of open eyes (oE) and closed eyes (cE) states based on computing a power ratio between different frequency bands of the acquired signal. We compare several real- and complex-valued transformations combined with two decision strategies: a threshold-based method and a linear discriminant analysis. Simulation results show both classifier accuracies and their corresponding system delays.


Assuntos
Algoritmos , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Movimentos Oculares/fisiologia , Internet das Coisas , Processamento de Sinais Assistido por Computador , Adulto , Desenho de Equipamento , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...