Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(26): 10551-10558, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888386

RESUMO

Drying oils such as linseed oil form a polymer network through a complex free-radical polymerization process. We have studied polymerization in this challenging class of polymers using a quartz crystal microbalance (QCM). The QCM is able to measure the evolution of polymer mass and mechanical properties as the oil transitions from a liquid-like to a solid-like state. Measurements using bulk materials and thin films provide information about the initial polymerization phase as well as the evolution of the mass and mechanical properties over the first two years of cure. The temperature-dependent response of the cured linseed oil films was also measured. These results were combined with previously published results obtained from traditional dynamic mechanical analysis to give a unified picture of the properties of these materials across a very broad temperature range.

2.
Phys Chem Chem Phys ; 26(3): 2657-2665, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174429

RESUMO

The supramolecular and mesoscopic architectures of lead-saponified linseed oil, used by painters since the Renaissance, have been characterised and linked to their rheological properties. The multi-scale organization of saponified oils has been demonstrated by SAXS (Small Angle X-ray Scattering), FF-TEM (Freeze-Fracture Transmission Electron Microscopy) and DIC (Differential Interference Contrast): some of the lead soaps (formed when the oil is heated in the presence of PbO) are organized into microscopic lamellar domains, distributed in a continuous matrix made up of unorganized species (partially saponified triglycerides, glycerol, remaining soaps, etc.). The concentration of lead soaps in the oil controls the average size and interaction between the lamellar domains. Linseed oil + PbO 17 mol% is viscous and consists of aggregates of lamellar domains isolated within the continuous unorganized matrix. In contrast, in linseed oil + PbO 50 mol%, the domains are homogeneously dispersed and form what can be described as a three-dimensional network, giving the system viscoelastic properties.

3.
J Colloid Interface Sci ; 633: 566-574, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36470137

RESUMO

From the 15th century onwards, painters began to treat their oils with lead compounds before grinding them with pigments. Such a treatment induces the partial hydrolysis of the oil triglycerides and the formation of lead soaps, which significantly modify the rheological properties of the oil paint. Organization at the supramolecular scale is thus expected to explain these macroscopic changes. Synchrotron Rheo-SAXS (Small Angle X-ray Scattering) measurements were carried out on lead-treated oils, with different lead contents. We can now propose a full picture of the relationship between structure and rheological properties of historical saponified oils. At rest, lead soaps in oil are organized as lamellar phases with a characteristic period of 50 Å. Under shear, the loss of viscoelastic properties can be linked to the modification of this organization. Continuous shear resulted in a preferential and reversible orientation of the lamellar domains which increased with the concentration of lead soaps. The parallel orientation predominates over the entire shear range (0-1000 s-1). Conversely, oscillatory shear coiled the lamellae into cylinders that oriented themselves vertically in the rheometer cell. This is the first report of such a vertical cylindrical structure obtained under shear from lamellae.


Assuntos
Óleos , Sabões , Difração de Raios X , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...