Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 23(2): ar25, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38771264

RESUMO

Course-based undergraduate research experiences (CUREs) have been proposed as a mechanism to democratize access to the benefits of apprentice-style scientific research to a broader diversity of students, promoting inclusivity and increasing student success and retention. As we evaluate CUREs, it is essential to explore their effectiveness within the environments of regional comprehensive universities and community colleges, because they are important access points for a wide variety of students. It is also important to address the potential influence of volunteer bias, where students can opt to enroll in either the CURE or a traditional lab, on the outcomes of CUREs. We evaluated a CURE at a regional comprehensive university under conditions both with and without volunteer bias. We find that nonvolunteer students report a lower sense of discovery and relevance of the CURE compared with students who volunteered for the course. Importantly, we also find that our replacement of the traditional lab class with a CURE resulted in lower scores on exams in the associated lecture course among students who are both BIPOC and Pell eligible. We call for additional research on the effects of CUREs at nonresearch-intensive institutions and without volunteer bias, to better understand the impact of these classes.


Assuntos
Biologia , Laboratórios , Ciência , Estudantes , Humanos , Universidades , Biologia/educação , Feminino , Ciência/educação , Masculino , Currículo , Grupos Minoritários/educação , Pesquisa , Adulto Jovem , Avaliação Educacional , Voluntários
2.
J Exp Bot ; 53(369): 699-705, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11886890

RESUMO

Water is a principal limitation to agricultural production during drought and in arid regions of the world. Mechanisms that plants use to cope with drought can be grouped into two different strategies: drought tolerance and drought avoidance. Previous efforts toward engineering plants for improved performance during drought have focused on drought tolerance, the ability to adjust to dry conditions. This report addresses the engineering of a drought-avoidance phenotype, which allows for the conservation of water during plant growth. The majority of water lost from plants occurs through stomata. When stomata are open, potassium, chloride and/or malate are present at high concentrations in guard cells. The accumulation of large numbers of ions during stomatal opening increases the turgor pressure of the guard cells, which results in increased pore size. Expression of a single gene from maize, NADP-malic enzyme (ME), which converts malate and NADP to pyruvate, NADPH, and CO(2), resulted in altered stomatal behaviour and water relations in tobacco. The ME-transformed plants had decreased stomatal conductance and gained more fresh mass per unit water consumed than did the wild type, but they were similar to the wild type in their growth and rate of development. Providing chloride via the transpiration stream partially reversed the effects of ME expression on stomatal aperture size, which is consistent with the interpretation that expression of ME altered malate metabolism in guard cells. These results suggest a role for malic enzyme in the mechanism of stomatal closure, as well as a potential mechanism for genetically altering plant water use.


Assuntos
Malato Desidrogenase/metabolismo , Nicotiana/genética , Estruturas Vegetais/genética , Água/metabolismo , Zea mays/genética , Aclimatação/genética , Aclimatação/fisiologia , Transporte Biológico Ativo , Dióxido de Carbono/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Clorofila/metabolismo , Desastres , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malato Desidrogenase/genética , Malatos/metabolismo , Fenótipo , Estruturas Vegetais/efeitos dos fármacos , Estruturas Vegetais/fisiologia , Plantas Geneticamente Modificadas , Potássio/metabolismo , Zea mays/fisiologia
3.
Tree Physiol ; 19(14): 917-924, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12651303

RESUMO

Because the rate of isoprene (2-methyl-1,3-butadiene) emission from plants is highly temperature-dependent, we investigated natural fluctuations in leaf temperature and effects of rapid temperature change on isoprene emission of red oak (Quercus rubra L.) leaves at the top of the canopy at Harvard Forest. Throughout the day, leaves often reached temperatures as much as 15 degrees C above air temperature. The highest temperatures were reached for only a few seconds at a time. We compared isoprene emission rates measured when leaf temperature was changed rapidly with those measured when temperature was changed slowly. In all cases, isoprene emission rate increased with increasing leaf temperature up to about 32 degrees C and then decreased with higher temperatures. The temperature at which isoprene emission rates began to decrease depended on how quickly measurements were made. Isoprene emission rates peaked at 32.5 degrees C when measured hourly, whereas rates peaked at 39 degrees C when measurements were made every four minutes. This behavior reflected the rapid increase in isoprene emission rate that occurred immediately after an increase in leaf temperature, and the subsequent decrease in isoprene emission rate when leaf temperature was held steady for longer than 20 minutes. We concluded that the observed temperature response of isoprene emission rate is a function of measurement protocol. Omitting this parameter from isoprene emission models will not affect simulated isoprene emission rates at mild temperatures, but can increase isoprene emission rates at high temperatures.

4.
Oecologia ; 106(1): 63-72, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28307158

RESUMO

Differences in reproductive demands between the sexes of dioecious plants could cause divergence in physiology between the sexes. We found that the reproductive effort of female Silene latifolia plants increased to more than twice that of male plants or female plants that were prevented from setting fruit by lack of pollination after 4 weeks of flowering. Whole-plant source/sink ratios of pollinated females were significantly lower than those of males or unpollinated females because of investment in fruit. We hypothesized that these differences in source/sink ratio between the sexes and within females, depending on pollination, would lead to differences in leaf photosynthetic rates. Within females, we found that photosynthetic capacity was consistent with measurement of whole-plant source/sink ratio. Females that were setting fruit had 30% higher light-saturated photosynthetic rates by 28 days after flowering than females that were not setting fruit. Males, however, had consistently higher photosynthetic rates than females from 10 days after flowering onwards. Males also had approximately twice the dark respiration rates of fruiting females. We found that female reproductive structures are longer-lived and contribute more carbon to their own support than male reproductive structures. Despite the higher rates of leaf dark respiration and lower calyx photosynthetic rates, males fix more carbon than do females. We conclude that females have a sink-regulated mechanism of photosynthesis that allows them to respond to variations in fruit set. This mechanism is not, however, sufficient to explain why male S. latifolia plants have higher rates of photosynthesis, higher source/sink ratios, and lower reproductive allocation, but fail to grow larger than female plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...