Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
J Mol Biol ; 335(1): 283-95, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14659757

RESUMO

The pK(a) values of the CXXC active-site cysteine residues play a critical role in determining the physiological function of the thioredoxin superfamily. To act as an efficient thiol-disulphide oxidant the thiolate state of the N-terminal cysteine must be stabilised and the thiolate state of the C-terminal cysteine residue destabilised. While increasing the pK(a) value of the C-terminal cysteine residue promotes oxidation of substrates, it has an inhibitory effect on the reoxidation of the enzyme, which is promoted by the formation of a thiolate at this position. Since reoxidation is essential to complete the catalytic cycle, the differential requirement for a high and a low pK(a) value for the C-terminal cysteine residue for different steps in the reaction presents us with a paradox. Here, we report the identification of a conserved arginine residue, located in the loop between beta5 and alpha4 of the catalytic domains of the human protein disulphide isomerase (PDI) family, which is critical for the catalytic function of PDI, ERp57, ERp72 and P5, specifically for reoxidation. An examination of the published NMR structure for the a domain of PDI combined with molecular dynamic studies suggest that the side-chain of this arginine residue moves into and out of the active-site locale and that this has a very marked effect on the pK(a) value of the active-site cysteine residues. This intra-domain motion resolves the apparent dichotomy of the pK(a) requirements for the C-terminal active-site cysteine.


Assuntos
Arginina , Sequência Conservada , Isomerases de Dissulfetos de Proteínas/química , Sítios de Ligação , Catálise , Cisteína , Proteínas de Choque Térmico/química , Humanos , Concentração de Íons de Hidrogênio , Isomerases/química , Cinética , Glicoproteínas de Membrana/química , Mutação , Oxirredução , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...