Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494075

RESUMO

The unfolded protein response is a mechanism aiming at restoring endoplasmic reticulum (ER) homeostasis and is likely involved in other adaptive pathways. The unfolded protein response is transduced by three proteins acting as sensors and triggering downstream signaling pathways. Among them, inositol-requiring enzyme 1 alpha (IRE1α) (referred to as IRE1 hereafter), an endoplasmic reticulum-resident type I transmembrane protein, exerts its function through both kinase and endoribonuclease activities, resulting in both X-box binding protein 1 mRNA splicing and RNA degradation (regulated ire1 dependent decay). An increasing number of studies have reported protein-protein interactions as regulators of these signaling mechanisms, and additionally, driving other noncanonical functions. In this review, we deliver evolutive and structural insights on IRE1 and further describe how this protein interaction network (interactome) regulates IRE1 signaling abilities or mediates other cellular processes through catalytic-independent mechanisms. Moreover, we focus on newly discovered targets of IRE1 kinase activity and discuss potentially novel IRE1 functions based on the nature of the interactome, thereby identifying new fields to explore regarding this protein's biological roles.


Assuntos
Endorribonucleases , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , Evolução Molecular
2.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396334

RESUMO

The glucose-requiring hexosamine biosynthetic pathway (HBP), which produces UDP-N-acetylglucosamine for glycosylation reactions, promotes lung adenocarcinoma (LUAD) progression. However, lung tumor cells often reside in low-nutrient microenvironments, and whether the HBP is involved in the adaptation of LUAD to nutrient stress is unknown. Here, we show that the HBP and the coat complex II (COPII) play a key role in cell survival during glucose shortage. HBP up-regulation withstood low glucose-induced production of proteins bearing truncated N-glycans, in the endoplasmic reticulum. This function for the HBP, alongside COPII up-regulation, rescued cell surface expression of a subset of glycoproteins. Those included the epidermal growth factor receptor (EGFR), allowing an EGFR-dependent cell survival under low glucose in anchorage-independent growth. Accordingly, high expression of the HBP rate-limiting enzyme GFAT1 was associated with wild-type EGFR activation in LUAD patient samples. Notably, HBP and COPII up-regulation distinguished LUAD from the lung squamous-cell carcinoma subtype, thus uncovering adaptive mechanisms of LUAD to their harsh microenvironment.


Assuntos
Glucose , Hexosaminas , Receptores ErbB/genética , Glucose/metabolismo , Glicosilação , Hexosaminas/metabolismo , Humanos , Nutrientes
3.
Mol Cell ; 79(1): 115-126.e6, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497497

RESUMO

Extension of telomeres is a critical step in the immortalization of cancer cells. This complex reaction requires proper spatiotemporal coordination of telomerase and telomeres and remains poorly understood at the cellular level. To understand how cancer cells execute this process, we combine CRISPR genome editing and MS2 RNA tagging to image single molecules of telomerase RNA (hTR). Real-time dynamics and photoactivation experiments of hTR in Cajal bodies (CBs) reveal that hTERT controls the exit of hTR from CBs. Single-molecule tracking of hTR at telomeres shows that TPP1-mediated recruitment results in short telomere-telomerase scanning interactions, and then base pairing between hTR and telomere ssDNA promotes long interactions required for stable telomerase retention. Interestingly, POT1 OB-fold mutations that result in abnormally long telomeres in cancers act by enhancing this retention step. In summary, single-molecule imaging unveils the life cycle of telomerase RNA and provides a framework to reveal how cancer-associated mutations mechanistically drive defects in telomere homeostasis.


Assuntos
Corpos Enovelados/metabolismo , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Imagem Individual de Molécula/métodos , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples/genética , Edição de Genes , Células HeLa , Humanos , Mutação , RNA/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
4.
J Cell Biol ; 216(8): 2355-2371, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28637749

RESUMO

Telomerase can generate a novel telomere at DNA double-strand breaks (DSBs), an event called de novo telomere addition. How this activity is suppressed remains unclear. Combining single-molecule imaging and deep sequencing, we show that the budding yeast telomerase RNA (TLC1 RNA) is spatially segregated to the nucleolus and excluded from sites of DNA repair in a cell cycle-dependent manner. Although TLC1 RNA accumulates in the nucleoplasm in G1/S, Pif1 activity promotes TLC1 RNA localization in the nucleolus in G2/M. In the presence of DSBs, TLC1 RNA remains nucleolar in most G2/M cells but accumulates in the nucleoplasm and colocalizes with DSBs in rad52Δ cells, leading to de novo telomere additions. Nucleoplasmic accumulation of TLC1 RNA depends on Cdc13 localization at DSBs and on the SUMO ligase Siz1, which is required for de novo telomere addition in rad52Δ cells. This study reveals novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair.


Assuntos
Ciclo Celular , Nucléolo Celular/enzimologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Fúngico/metabolismo , RNA Fúngico/metabolismo , RNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Telômero/metabolismo , Transporte Ativo do Núcleo Celular , Bleomicina/toxicidade , Ciclo Celular/efeitos dos fármacos , Nucléolo Celular/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/efeitos dos fármacos , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA/genética , RNA Fúngico/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Imagem Individual de Molécula , Sumoilação , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Methods ; 114: 46-53, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474163

RESUMO

In most eukaryotes, the ribonucleoprotein complex telomerase is responsible for maintaining telomere length. In recent years, single-cell microscopy techniques such as fluorescent in situ hybridization and live-cell imaging have been developed to image the RNA subunit of the telomerase holoenzyme. These techniques are now becoming important tools for the study of telomerase biogenesis, its association with telomeres and its regulation. Here, we present detailed protocols for live-cell imaging of the Saccharomyces cerevisiae telomerase RNA subunit, called TLC1, and also of the non-coding telomeric repeat-containing RNA TERRA. We describe the approach used for genomic integration of MS2 stem-loops in these transcripts, and provide information for optimal live-cell imaging of these non-coding RNAs.


Assuntos
Imagem Molecular/métodos , RNA Fúngico/genética , RNA não Traduzido/genética , RNA/genética , Saccharomyces cerevisiae/genética , Telomerase/genética , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...