Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(12): 3043-3046, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709045

RESUMO

A new, to the best of our knowledge, internal reference method has been developed for the study of the upconversion luminescence of nanoparticle suspensions. This method provides correct analysis and comparison of the luminescent signals obtained under different conditions. To excite the echo signals of samples, it is proposed to use the radiation from an optical parametric oscillator at two wavelengths for the simultaneous excitation of the upconversion luminescence of particles and the Raman scattering signal of the medium in the Stokes region of the spectrum. Due to the linear dependence of the intensity of the Raman scattering of the medium on the excitation power density, the normalization of the upconversion luminescence signal of particles to the intensity of the Raman scattering of the medium makes it possible to eliminate the influences of the instability of the intensity of the laser radiation, light scattering by the medium, inaccuracies in alignment, etc. on the luminescence signal.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 241: 118627, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32623299

RESUMO

The luminescence intensity ratio method, exploiting the temperature-dependent luminescence of the thermally coupled energy levels, is regarded as a very promising approach for optical temperature measurement at the cellular level. In this study, it was found that bare NaYF4:Yb3+/Tm3+ nanoparticles cannot be used as a cellular thermosensor in principle because of their tendency to aggregate, which significantly affects the luminescent properties of the complex, introducing uncertainty in the intensity ratio measurement. NaYF4:Yb3+/Tm3+ up-conversion nanoparticles, coated with polyethylene glycol (PEG) and carboxyl groups (COOH), on the other hand, proved to be promising candidates for the role of thermosensors. For the first time the temperature sensitivity of the NaYF4:Yb3+/Tm3+@PEG@COOH thermosensor was calculated in water and in biotissues. It was found that the sensitivity of the thermosensor increased by 1.3 times during the transition from water to egg white and urine - from 1.17% × K-1 to 1.58% × K-1. This effect is associated with the chemical composition of the studied media. The results obtained suggest that using upconversion nanocomplexes as primary thermosensors is still difficult.


Assuntos
Nanocompostos , Itérbio , Luminescência , Temperatura , Ítrio
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117879, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31839574

RESUMO

The absolute luminescence quantum yield Q as a function of excitation wavelength λex in a wide spectral range 270-470 nm was measured for the first time for the group of carbon nanoparticles dispersed in water: carbon dots (CD), detonation nanodiamonds (DND), as well as detonation nanodiamonds decorated with carbon dots (CD-DND). The luminescence quantum yield for DND increased after functionalization; the CD-decorated DND demonstrated significantly higher Q values in the UV region of excitation. We found that the quantum yield for CD luminescence is 4-8 times higher than that for CD-DND luminescence, and 20 times higher than that for DND luminescence. Roughly three spectral regions can be distinguished within the Q(λex): below 330 nm, 330-390 nm and 390-470 nm. Conclusions are drawn about the number of chromophores of the studied nanoparticles and transfer of photoexcitation energy in the systems under consideration.

4.
J Colloid Interface Sci ; 547: 206-216, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959260

RESUMO

HYPOTHESIS: Nanodiamonds, one of the most promising nanomaterials for the use in biomedicine, placed in the organisms are bound to interact with various amphiphilic lipids and their micelles. However, while the influence of surfactants, the close relative of lipids, on the properties of colloidal nanodiamonds is well studied, the influence of nanodiamonds on the properties of surfactants, lipids, and, therefore, on the structure of surrounding tissues, is poorly understood. EXPERIMENT: In this work, the influence of interactions of hydrophobic and hydrophilic nanodiamonds with ionic surfactant sodium octanoate in water on hydrogen bonds, the properties of the surfactant and micelle formation were studied using Raman spectroscopy and dynamic light scattering technique. FINDINGS: Nanodiamonds are found to actively influence the bulk properties only of the premicellar surfactant solutions: the strength of hydrogen bonds, ordering and conformation of hydrocarbon tails, the critical micelle concentration. This influence is deduced to be dependent on two mechanisms not unique to nanodiamonds: (1) the induction of micro-flows around nanoparticles undergoing Brownian motions, and (2) the creation of the chaotic state in the surfactant solutions if two or more incompatible types of interactions between nanoparticles' surfaces and surfactants are similarly favorable, e.g. hydrophobic interaction and Coulomb attraction.

5.
Nanomedicine ; 14(4): 1371-1380, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655916

RESUMO

In this study, a new approach to the implementation of optical imaging of fluorescent nanoparticles in a biological medium using artificial neural networks is proposed. The studies were carried out using new synthesized nanocomposites - nanometer graphene oxides, covered by the poly(ethylene imine)-poly(ethylene glycol) copolymer and by the folic acid. We present an example of a successful solution of the problem of monitoring the removal of nanocomposites based on nGO and their components with urine using fluorescent spectroscopy and artificial neural networks. However, the proposed method is applicable for optical imaging of any fluorescent nanoparticles used as theranostic agents in biological tissue.


Assuntos
Nanocompostos/química , Nanopartículas/química , Redes Neurais de Computação , Grafite/química , Imagem Óptica , Polietilenoglicóis/química , Polímeros/química
6.
J Biomed Opt ; 19(11): 117007, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25396714

RESUMO

The principle possibility of extraction of fluorescence of nanoparticles in the presence of background autofluorescence of a biological environment using neural network algorithms is demonstrated. It is shown that the methods used allow detection of carbon nanoparticles fluorescence against the background of the autofluorescence of egg white with a sufficiently low concentration detection threshold (not more than 2 µg/ml for carbon dots 3 µg/ml and for nanodiamonds). It was also shown that the use of the input data compression can further improve the accuracy of solving the inverse problem by 1.5 times.


Assuntos
Biomarcadores/química , Carbono/química , Redes Neurais de Computação , Imagem Óptica/métodos , Animais , Galinhas , Clara de Ovo/química , Modelos Químicos , Nanopartículas/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...