Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144427

RESUMO

In this work, we evaluated the direct effect of a dialkyl carbamoyl chloride (DACC)-coated dressing on Staphylococcus aureus adhesion and growth in vitro, as well as the indirect effect of the dressing on fibroblast and macrophage activity. S. aureus cultures were treated with the dressing or gauze in Müller-Hinton medium or serum-supplemented Dulbecco's modified Eagle medium. Bacterial growth and attachment were assessed through colony-forming units (CFU) and residual biomass analyses. Fibroblast and macrophage co-cultures were stimulated with filtered supernatants from the bacterial cultures treated with the DACC-coated dressing, following which tumor necrosis factor (TNF)-α/transforming growth factor (TGF)-ß1 expression and gelatinolytic activity were assessed by enzyme-linked immunosorbent assays (ELISA) and zymography, respectively. The DACC-coated dressing bound 1.8−6.1% of all of the bacteria in the culture. Dressing-treated cultures presented biofilm formation in the dressing (enabling mechanical removal), with limited formation outside of it (p < 0.001). Filtered supernatants of bacterial cultures treated with the DACC-coated dressing did not over-stimulate TNF-α or TGF-ß1 expression (p < 0.001) or increase gelatinolytic activity in eukaryotic cells, suggesting that bacterial cell integrity was maintained. Based on the above data, wound caregivers should consider the use of hydrophobic dressings as a first option for the management of acute or chronic wounds.

2.
PLoS One ; 16(10): e0258235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34679089

RESUMO

Carnivorous plants feed on animal prey, mainly insects, to get additional nutrients. This carnivorous syndrome is widely investigated and reported. In contrast, reports on herbivores feeding on carnivorous plants and related defenses of the plants under attack are rare. Here, we studied the interaction of a pitcher plant, Nepenthes x ventrata, with a generalist lepidopteran herbivore, Spodoptera littoralis, using a combination of LC/MS-based chemical analytics, choice and feeding assays. Chemical defenses in N. x ventrata leaves were analyzed upon S. littoralis feeding. A naphthoquinone, plumbagin, was identified in Nepenthes defense against herbivores and as the compound mainly responsible for the finding that S. littoralis larvae gained almost no weight when feeding on Nepenthes leaves. Plumbagin is constitutively present but further 3-fold increased upon long-term (> 1 day) feeding. Moreover, in parallel de novo induced trypsin protease inhibitor (TI) activity was identified. In contrast to TI activity, enhanced plumbagin levels were not phytohormone inducible, not even by defense-related jasmonates although upon herbivory their level increased more than 50-fold in the case of the bioactive jasmonic acid-isoleucine. We conclude that Nepenthes is efficiently protected against insect herbivores by naphthoquinones acting as phytoanticipins, which is supported by additional inducible defenses. The regulation of these defenses remains to be investigated.


Assuntos
Planta Carnívora/fisiologia , Herbivoria/fisiologia , Naftoquinonas/farmacologia , Compostos Fitoquímicos/farmacologia , Sarraceniaceae/fisiologia , Ácido Abscísico/farmacologia , Animais , Planta Carnívora/efeitos dos fármacos , Ciclopentanos/farmacologia , Dieta , Herbivoria/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Inibidores de Proteases/farmacologia , Ácido Salicílico/farmacologia , Sarraceniaceae/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Spodoptera/fisiologia
3.
Plant Cell Environ ; 44(12): 3589-3605, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545584

RESUMO

Regulation of root transport systems is essential under fluctuating nutrient supply. In the case of potassium (K+ ), HAK/KUP/KT K+ transporters and voltage-gated K+ channels ensure root K+ uptake in a wide range of K+ concentrations. In Arabidopsis, the CIPK23/CBL1-9 complex regulates both transporter- and channel-mediated root K+ uptake. However, research about K+ homeostasis in crops is in demand due to species-specific mechanisms. In the present manuscript, we studied the contribution of the voltage-gated K+ channel LKT1 and the protein kinase SlCIPK23 to K+ uptake in tomato plants by analysing gene-edited knockout tomato mutant lines, together with two-electrode voltage-clamp experiments in Xenopus oocytes and protein-protein interaction analyses. It is shown that LKT1 is a crucial player in tomato K+ nutrition by contributing approximately 50% to root K+ uptake under K+ -sufficient conditions. Moreover, SlCIPK23 was responsible for approximately 100% of LKT1 and approximately 40% of the SlHAK5 K+ transporter activity in planta. Mg+2 and Na+ compensated for K+ deficit in tomato roots to a large extent, and the accumulation of Na+ was strongly dependent on SlCIPK23 function. The role of CIPK23 in Na+ accumulation in tomato roots was not conserved in Arabidopsis, which expands the current set of CIPK23-like protein functions in plants.


Assuntos
Proteínas de Plantas/genética , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sódio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
4.
FEBS Open Bio ; 11(9): 2576-2585, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34289256

RESUMO

Yellow to red colored betalains are a chemotaxonomic feature of Caryophyllales, while in most other plant taxa, anthocyanins are responsible for these colors. The carnivorous plant family Nepenthaceae belongs to Caryophyllales; here, red-pigmented tissues seem to attract insect prey. Strikingly, the chemical nature of red color in Nepenthes has never been elucidated. Although belonging to Caryophyllales, in Nepenthes, some molecular evidence supports the presence of anthocyanins rather than betalains. However, there was previously no direct chemical proof of this. Using ultra-high-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry, we identified cyanidin glycosides in Nepenthes species and tissues. Further, we reveal the existence of a complete set of constitutively expressed anthocyanin biosynthetic genes in Nepenthes. Thus, here we finally conclude the long-term open question regarding red pigmentation in Nepenthaceae.


Assuntos
Antocianinas/análise , Planta Carnívora/química , Pigmentação , Antocianinas/biossíntese , Antocianinas/química , Antocianinas/isolamento & purificação , Planta Carnívora/classificação , Planta Carnívora/genética , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estrutura Molecular , Filogenia , Espectrometria de Massas por Ionização por Electrospray , Transcriptoma
5.
Plant Physiol ; 185(4): 1860-1874, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33595056

RESUMO

The high-affinity K+ transporter HAK5 from Arabidopsis (Arabidopsis thaliana) is essential for K+ acquisition and plant growth at low micromolar K+ concentrations. Despite its functional relevance in plant nutrition, information about functional domains of HAK5 is scarce. Its activity is enhanced by phosphorylation via the AtCIPK23/AtCBL1-9 complex. Based on the recently published three-dimensionalstructure of the bacterial ortholog KimA from Bacillus subtilis, we have modeled AtHAK5 and, by a mutational approach, identified residues G67, Y70, G71, D72, D201, and E312 as essential for transporter function. According to the structural model, residues D72, D201, and E312 may bind K+, whereas residues G67, Y70, and G71 may shape the selective filter for K+, which resembles that of K+shaker-like channels. In addition, we show that phosphorylation of residue S35 by AtCIPK23 is required for reaching maximal transport activity. Serial deletions of the AtHAK5 C-terminus disclosed the presence of an autoinhibitory domain located between residues 571 and 633 together with an AtCIPK23-dependent activation domain downstream of position 633. Presumably, autoinhibition of AtHAK5 is counteracted by phosphorylation of S35 by AtCIPK23. Our results provide a molecular model for K+ transport and describe CIPK-CBL-mediated regulation of plant HAK transporters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Mutação
6.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562562

RESUMO

Some plant species are less susceptible to herbivore infestation than others. The reason for this is often unknown in detail but is very likely due to an efficient composition of secondary plant metabolites. Strikingly, carnivorous plants of the genus Nepenthes show extremely less herbivory both in the field and in green house. In order to identify the basis for the efficient defense against herbivorous insects in Nepenthes, we performed bioassays using larvae of the generalist lepidopteran herbivore, Spodoptera littoralis. Larvae fed with different tissues from Nepenthes x ventrata grew significantly less when feeding on a diet containing leaf tissue compared with pitcher-trap tissue. As dominating metabolite in Nepenthes tissues, we identified a naphthoquinone, plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone). When plumbagin was added at different concentrations to the diet of S. littoralis larvae, an EC50 value for larval growth inhibition was determined with 226.5 µg g-1 diet. To further determine the concentration causing higher larval mortality, sweet potato leaf discs were covered with increasing plumbagin concentrations in no-choice-assays; a higher mortality of the larvae was found beyond 60 µg plumbagin per leaf, corresponding to 750 µg g-1. Plant-derived insecticides have long been proposed as alternatives for pest management; plumbagin and derivatives might be such promising environmentally friendly candidates.


Assuntos
Caryophyllales/química , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Naftoquinonas/química , Naftoquinonas/farmacologia , Animais , Folhas de Planta/química
7.
J Exp Bot ; 71(16): 5053-5060, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32484219

RESUMO

The high-affinity K+ transporter HAK5 is the major contributor to root K+ uptake from dilute solutions in K+-starved Arabidopsis plants. Its functionality is tightly regulated and its activity is enhanced under K+ starvation by the transcriptional induction of the AtHAK5 gene, and by the activation of the transporter via the AtCBL1-AtCIPK23 complex. In the present study, the 26 members of the Arabidopsis CIPK protein kinase family were screened in yeast for their capacity to activate HAK5-mediated K+ uptake. Among them, AtCIPK1 was the most efficient activator of AtHAK5. In addition, AtCIPK9, previously reported to participate in K+ homeostasis, also activated the transporter. In roots, the genes encoding AtCIPK1 and AtCIPK9 were induced by K+ deprivation and atcipk1 and atcipk9 Arabidopsis KO mutants showed a reduced AtHAK5-mediated Rb+ uptake. Activation of AtHAK5 by AtCIPK1 did not occur under hyperosmotic stress conditions, where AtCIPK1 function has been shown to be required to maintain plant growth. Taken together, our data contribute to the identification of the complex regulatory networks that control the high-affinity K+ transporter AtHAK5 and root K+ uptake.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Simportadores , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Potássio/metabolismo , Canais de Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Proteínas Quinases , Proteínas Serina-Treonina Quinases/genética , Simportadores/genética , Simportadores/metabolismo
8.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575527

RESUMO

Nepenthes is a genus of carnivorous plants that evolved a pitfall trap, the pitcher, to catch and digest insect prey to obtain additional nutrients. Each pitcher is part of the whole leaf, together with a leaf blade. These two completely different parts of the same organ were studied separately in a non-targeted metabolomics approach in Nepenthes x ventrata, a robust natural hybrid. The first aim was the analysis and profiling of small (50-1000 m/z) polar and non-polar molecules to find a characteristic metabolite pattern for the particular tissues. Second, the impact of insect feeding on the metabolome of the pitcher and leaf blade was studied. Using UPLC-ESI-qTOF and cheminformatics, about 2000 features (MS/MS events) were detected in the two tissues. They showed a huge chemical diversity, harboring classes of chemical substances that significantly discriminate these tissues. Among the common constituents of N. x ventrata are phenolics, flavonoids and naphthoquinones, namely plumbagin, a characteristic compound for carnivorous Nepenthales, and many yet-unknown compounds. Upon insect feeding, only in pitchers in the polar compounds fraction, small but significant differences could be detected. By further integrating information with cheminformatics approaches, we provide and discuss evidence that the metabolite composition of the tissues can point to their function.


Assuntos
Insetos/fisiologia , Magnoliopsida/química , Metabolômica/métodos , Ração Animal , Animais , Cromatografia Líquida de Alta Pressão , Naftoquinonas/análise , Especificidade de Órgãos , Folhas de Planta/química , Espectrometria de Massas em Tandem
9.
Plant Cell Environ ; 43(7): 1707-1721, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275780

RESUMO

Root K+ acquisition is a key process for plant growth and development, extensively studied in the model plant Arabidopsis thaliana. Because important differences may exist among species, translational research supported by specific studies is needed in crops such as tomato. Here we present a reverse genetics study to demonstrate the role of the SlHAK5 K+ transporter in tomato K+ nutrition, Cs+ accumulation and its fertility. slhak5 KO lines, generated by CRISPR-Cas edition, were characterized in growth experiments, Rb+ and Cs+ uptake tests and root cells K+ -induced plasma membrane depolarizations. Pollen viability and its K+ accumulation capacity were estimated by using the K+ -sensitive dye Ion Potassium Green 4. SlHAK5 is the major system for high-affinity root K+ uptake required for plant growth at low K+ , even in the presence of salinity. It also constitutes a pathway for Cs+ entry in tomato plants with a strong impact on fruit Cs+ accumulation. SlHAK5 also contributes to pollen K+ uptake and viability and its absence produces almost seedless fruits. Knowledge gained into SlHAK5 can serve as a model for other crops with fleshy fruits and it can help to generate tools to develop low Cs+ or seedless fruits crops.


Assuntos
Césio/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Canais de Potássio/fisiologia , Potássio/metabolismo , Solanum lycopersicum/metabolismo , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Edição de Genes , Solanum lycopersicum/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tubo Polínico/crescimento & desenvolvimento , Canais de Potássio/metabolismo , Reprodução , Sementes/crescimento & desenvolvimento
10.
Plant Cell Environ ; 42(8): 2357-2371, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31046137

RESUMO

Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild-type Arabidopsis thaliana and in T-DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T-DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+ -starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+ -sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Canais de Potássio/fisiologia , Antiportadores de Potássio-Hidrogênio/fisiologia , Potássio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Mutagênese Insercional , Canais de Potássio/genética , Canais de Potássio/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo
11.
Physiol Plant ; 165(2): 264-276, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30187486

RESUMO

Potassium (K+ ) is a macronutrient known for its high mobility and positive charge, which allows efficient and fast control of the electrical balance and osmotic potential in plant cells. Such features allow K+ to remarkably contribute to plant stress adaptation. Some agricultural lands are deficient in K+ , imposing a stress that reduces crop yield and makes fertilization a common practice. However, individual stress conditions in the field are rare, and crops usually face a combination of different stresses. As plant response to a stress combination cannot always be deduced from individual stress action, it is necessary to gain insights into the specific mechanisms that connect K+ homeostasis with other stress effects to improve plant performance in the context of climate change. Surprisingly, plant responses to environmental stresses under a K+ -limiting scenario are poorly understood. In the present review, we summarize current knowledge and find substantial gaps regarding specific outcomes of K+ deficiency in addition to other environmental stresses. In this regard, combined nutrient deficiencies of K+ and other macronutrients are covered in the first part of the review and interactions arising from K+ deficiency with salinity, drought and biotic factors in the second part. Information available so far suggests a prominent role of potassium and nitrate transport systems and their regulatory proteins in the response of plants to several stress combinations. Thus, such molecular pathways, which are located at the crossroad between K+ homeostasis and environmental stresses, could be considered biotechnological targets in future studies.


Assuntos
Meio Ambiente , Potássio/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
12.
Biomed Instrum Technol ; 43(6): 484-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20041539

RESUMO

The National Rehabilitation Institute (INR) in Mexico City purchased 12 Madsen Orbiter 922 audiometers in 2006. While this audiometer is excellent for diagnosing the degree and type of hearing loss, it has presented problems in transfering, saving and printing the results of special tests and logoaudiometry from audiometer to workstation with the NOAH-3 system. The data are lost when the audiometer is turned off or a new patient is captured. There is no database storing and, shortly after the results have been printed on the thermal paper, the audiograms are erased. This problem was addressed by designing and implementing the InterAudio (AAMS) communication and graphical interface. The limitations and scope of the Automatic Audiometric Measurement System were analyzed, then a search of technical information was performed that included the resources for designing, developing and implementing the transfer interface, the user's graphical module requirements, and the tools for printing and saving the study.


Assuntos
Audiometria/instrumentação , Gráficos por Computador , Diagnóstico por Computador/instrumentação , Interface Usuário-Computador , Audiometria/métodos , Diagnóstico por Computador/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...