Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Microbes Infect ; 26(3): 105283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38141852

RESUMO

Leprosy is a chronic infectious disease caused by the intracellular bacillus Mycobacterium leprae (M. leprae), which is known to infect skin macrophages and Schwann cells. Although adipose tissue is a recognized site of Mycobacterium tuberculosis infection, its role in the histopathology of leprosy was, until now, unknown. We analyzed the M. leprae capacity to infect and persist inside adipocytes, characterizing the induction of a lipolytic phenotype in adipocytes, as well as the effect of these infected cells on macrophage recruitment. We evaluated 3T3-L1-derived adipocytes, inguinal adipose tissue of SWR/J mice, and subcutaneous adipose tissue biopsies of leprosy patients. M. leprae was able to infect 3T3-L1-derived adipocytes in vitro, presenting a strong lipolytic profile after infection, followed by significant cholesterol efflux. This lipolytic phenotype was replicated in vivo by M. leprae injection into mice inguinal adipose tissue. Furthermore, M. leprae was detected inside crown-like structures in the subcutaneous adipose tissue of multibacillary patients. These data indicate that subcutaneous adipose tissue could be an important site of infection, and probably persistence, for M. leprae, being involved in the modulation of the innate immune control in leprosy via the release of cholesterol, MCP-1, and adiponectin.


Assuntos
Hanseníase , Mycobacterium leprae , Camundongos , Animais , Humanos , Mycobacterium leprae/fisiologia , Lipólise , Adipócitos/patologia , Imunidade , Colesterol
2.
Front Immunol ; 14: 1282278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115994

RESUMO

Introduction: Toxoplasma gondii, responsible for causing toxoplasmosis, is a prevalent food and waterborne pathogen worldwide. It commonly infects warm-blooded animals and affects more than a third of the global human population. Once ingested, the parasite enters the host's small intestine and rapidly disseminates throughout the body via the bloodstream, infiltrating various tissues. Leukocyte-driven responses are vital against T. gondii, with neutrophils playing a dual role: swiftly recruited to infection sites, releasing inflammatory mediators, and serving as a replication hub and Trojan horses, aiding parasite spread. Neutrophils from various hosts release extracellular traps (NETs) against the protozoan. However, gaps persist regarding the mechanisms of NETs production to parasite and their significance in infection control. This study investigates the interplay between human neutrophils and T. gondii, exploring dynamics, key molecules, and signaling pathways involved in NETs production upon protozoan challenge. Methods and Results: Using confocal and electron microscopy, live cell imaging, pharmacological inhibitors, and DNA quantification assays, we find that human neutrophils promptly release both classical and rapid NETs upon pathogen stimulation. The NETs structure exhibits diverse phenotypes over time and is consistently associated with microorganisms. Mechanisms involve neutrophil elastase and peptidylarginine deiminase, along with intracellular calcium signaling and the PI3K pathway. Unexpectedly, human traps do not diminish viability or infectivity, but potentially aid in capturing parasites for subsequent neutrophil phagocytosis and elimination. Discussion: By revealing NETs formation mechanisms and their nuanced impact on T. gondii infection dynamics, our findings contribute to broader insights into host-pathogen relationships.


Assuntos
Armadilhas Extracelulares , Toxoplasma , Toxoplasmose , Animais , Humanos , Armadilhas Extracelulares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Toxoplasmose/metabolismo , Neutrófilos/metabolismo , Toxoplasma/fisiologia
3.
PLoS Negl Trop Dis ; 17(6): e0011383, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276237

RESUMO

BACKGROUND: Leprosy is caused by multiple interactions between Mycobacterium leprae (M. leprae) and the host's peripheral nerve cells. M. leprae primarily invades Schwann cells, causing nerve damage and consequent development of disabilities. Despite its long history, the pathophysiological mechanisms of nerve damage in the lepromatous pole of leprosy remain poorly understood. This study used the findings of 18F-FDG PET/CT on the peripheral nerves of eight lepromatous patients to evaluate the degree of glucose uptake by peripheral nerves and compared them with clinical, electrophysiological, and histopathological evaluations. METHODS: Eight patients with lepromatous leprosy were included in this study. Six patients were evaluated up to three months after leprosy diagnosis using neurological examination, nerve conduction study, 18F-FDG PET/CT, and nerve biopsy. Two others were evaluated during an episode of acute neuritis, with clinical, neurophysiological, and PET-CT examinations to compare the images with the first six. RESULTS: Initially, six patients already had signs of peripheral nerve injury, regardless of symptoms; however, they did not present with signs of neuritis, and there was little or no uptake of 18F-FDG in the clinically and electrophysiologically affected nerves. Two patients with signs of acute neuritis had 18F-FDG uptake in the affected nerves. CONCLUSIONS: 18F-FDG uptake correlates with clinical neuritis in lepromatous leprosy patients but not in silent neuritis patients. 18F-FDG PET-CT could be a useful tool to confirm neuritis, especially in cases that are difficult to diagnose, such as for the differential diagnosis between a new episode of neuritis and chronic neuropathy.


Assuntos
Hanseníase Virchowiana , Hanseníase , Neurite (Inflamação) , Doenças do Sistema Nervoso Periférico , Humanos , Hanseníase Virchowiana/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Hanseníase/microbiologia , Mycobacterium leprae , Neurite (Inflamação)/diagnóstico , Neurite (Inflamação)/microbiologia , Neurite (Inflamação)/patologia , Inflamação , Glucose
4.
PLoS Pathog ; 19(3): e1011260, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972292

RESUMO

Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn's disease and Parkinson's disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.


Assuntos
Predisposição Genética para Doença , Hanseníase , Criança , Humanos , Alelos , Genótipo , Hanseníase/genética , Mutação , Proteína Adaptadora de Sinalização NOD2/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética
5.
J Neurochem ; 164(2): 158-171, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349509

RESUMO

Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.


Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Animais , Camundongos , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicolipídeos/metabolismo , Vacina BCG/metabolismo , Hanseníase/microbiologia , Células de Schwann/metabolismo
6.
IBRO Neurosci Rep ; 15: 11-16, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38204570

RESUMO

Mycobacterium leprae, the pathogen that causes human leprosy, has a unique affinity for infecting and persisting inside Schwann cells, the principal glia of the peripheral nervous system. Several studies have focused on this intricate host-pathogen interaction as an attempt to advance the current knowledge of the mechanisms governing nerve destruction and disease progression. However, during the chronic course of leprosy neuropathy, Schwann cells can respond to and internalize both live and dead M. leprae and bacilli-derived antigens, and this may result in divergent cellular pathobiological responses. This may also distinctly contribute to tissue degeneration, failure to repair, inflammatory reactions, and nerve fibrosis, hallmarks of the disease. Therefore, the present study systematically searched for published studies on M. leprae-Schwann cell interaction in vitro to summarize the findings and provide a focused discussion of Schwann cell dynamics following challenge with leprosy bacilli.

7.
Mem Inst Oswaldo Cruz ; 117: e220058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36259791

RESUMO

BACKGROUND: Leprosy is curable by multidrug therapy (MDT) treatment regimen ranging from six to 12 months. The variable levels of tolerance and adherence among patients can, however, result in treatment failure and the emergence of drug-resistant strains. OBJECTIVES: Describe the impact of MDT over Mycobacterium leprae viability in patient's oral and nasal mucosa along treatment. METHODS: Mycobacterium leprae viability was monitored by quantitative polymerase chain reaction (qPCR) quantification of 16S rRNA in lateral and contralateral scrapings of oral and nasal mucosa of 10 multibacillary patients along the initial five months of treatment. FINDINGS: The results demonstrated high heterogenicity of M. leprae viability among patients and between nasal and oral samples. Of six patients who presented good adherence and tolerance to the treatment, only four displayed absence of M. leprae viability in both samples three months after the first MDT dose, while for the other two, the absence of M. leprae viability in the oral and nasal cavities was only detected five months after the first dose. MAIN CONCLUSIONS: We concluded that qPCR of 16S rRNA for the determination of M. leprae viability in nasal and oral scraping samples could represent an interesting approach to monitor treatment efficacy.


Assuntos
Hansenostáticos , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , RNA Ribossômico 16S/genética , Hansenostáticos/uso terapêutico , Quimioterapia Combinada , Mucosa Nasal/microbiologia , DNA Bacteriano/genética
8.
Front Microbiol ; 13: 918009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722339

RESUMO

The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.

9.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628394

RESUMO

RoundUp® (RUp) is a comercial formulation containing glyphosate (N-(phosphono-methyl) glycine), and is the world's leading wide-spectrum herbicide used in agriculture. Supporters of the broad use of glyphosate-based herbicides (GBH) claim they are innocuous to humans, since the active compound acts on the inhibition of enzymes which are absent in human cells. However, the neurotoxic effects of GBH have already been shown in many animal models. Further, these formulations were shown to disrupt the microbiome of different species. Here, we investigated the effects of a lifelong exposure to low doses of the GBH-RUp on the gut environment, including morphological and microbiome changes. We also aimed to determine whether exposure to GBH-RUp could harm the developing brain and lead to behavioral changes in adult mice. To this end, animals were exposed to GBH-RUp in drinking water from pregnancy to adulthood. GBH-RUp-exposed mice had no changes in cognitive function, but developed impaired social behavior and increased repetitive behavior. GBH-Rup-exposed mice also showed an activation of phagocytic cells (Iba-1-positive) in the cortical brain tissue. GBH-RUp exposure caused increased mucus production and the infiltration of plama cells (CD138-positive), with a reduction in phagocytic cells. Long-term exposure to GBH-RUp also induced changes in intestinal integrity, as demonstrated by the altered expression of tight junction effector proteins (ZO-1 and ZO-2) and a change in the distribution of syndecan-1 proteoglycan. The herbicide also led to changes in the gut microbiome composition, which is also crucial for the establishment of the intestinal barrier. Altogether, our findings suggest that long-term GBH-RUp exposure leads to morphological and functional changes in the gut, which correlate with behavioral changes that are similar to those observed in patients with neurodevelopmental disorders.


Assuntos
Microbioma Gastrointestinal , Herbicidas , Adulto , Animais , Disbiose/induzido quimicamente , Feminino , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Humanos , Camundongos , Gravidez , Glifosato
10.
Lancet Reg Health Am ; 10: 100221, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35309089

RESUMO

Background: Brazil has been severely impacted by COVID-19 pandemics that is aggravated by the absence of a scientifically-driven coordinated informative campaign and the interference in public health management, which ultimately affected health measures to avoid SARS-CoV2 spread. The decentralization and resultant conflicts in disease control activities produced different protection behaviours and local government measures. In the present study, we investigated how political partisanship and socio-economic factors determined the outcome of COVID-19 at the local level in Brazil. Methods: A retrospective study of COVID-19 deaths was carried out using mortality databases between Feb 2020, and Jun 2021 for the 5570 Brazilian municipalities. Socio-economic parameters including city categories, income and inequality indexes, health service quality and partisanship, assessed by the result of the second round of the 2018 Brazilian presidential elections, were included. Regression tree analysis was carried out to identify the statistical significance and conditioning relationships of variables. Findings: Municipalities that supported then-candidate Jair Bolsonaro in the 2018 elections were those that had the worst COVID-19 mortality rates, mainly during the second epidemic wave of 2021. This pattern was observed even considering structural inequalities among cities. Interpretation: In general, the first phase of the pandemic hit large and central cities hardest, while the second wave mostly impacted Bolsonarian municipalities, where scientific denialism among the population was stronger. Negative effects of partisanship towards the right-wing on COVID-19 outcomes counterbalances favourable socioeconomic indexes in affluent Brazilian cities. Our results underscore the fragility of public health policies which were undermined by the scientific denialism of right-wing supporters in Brazil. Funding: International joint laboratories of Institute de Recherche pour le Développement, a partnership between the University of Brasília and the Oswaldo Cruz Foundation (LMI-Sentinela - UnB - Fiocruz - IRD), Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq).

11.
s.l; s.n; 2022. 14 p. ilus, graf.
Não convencional em Inglês | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1414836

RESUMO

Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial­Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy. (AU)


Assuntos
Humanos , Animais , Ratos , Vacina BCG/metabolismo , Glicolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Hanseníase/microbiologia , Mycobacterium leprae/genética
12.
Mem. Inst. Oswaldo Cruz ; 117: e220058, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1405994

RESUMO

BACKGROUND Leprosy is curable by multidrug therapy (MDT) treatment regimen ranging from six to 12 months. The variable levels of tolerance and adherence among patients can, however, result in treatment failure and the emergence of drug-resistant strains. OBJECTIVES Describe the impact of MDT over Mycobacterium leprae viability in patient's oral and nasal mucosa along treatment. METHODS Mycobacterium leprae viability was monitored by quantitative polymerase chain reaction (qPCR) quantification of 16S rRNA in lateral and contralateral scrapings of oral and nasal mucosa of 10 multibacillary patients along the initial five months of treatment. FINDINGS The results demonstrated high heterogenicity of M. leprae viability among patients and between nasal and oral samples. Of six patients who presented good adherence and tolerance to the treatment, only four displayed absence of M. leprae viability in both samples three months after the first MDT dose, while for the other two, the absence of M. leprae viability in the oral and nasal cavities was only detected five months after the first dose. MAIN CONCLUSIONS We concluded that qPCR of 16S rRNA for the determination of M. leprae viability in nasal and oral scraping samples could represent an interesting approach to monitor treatment efficacy.

13.
Front Immunol ; 12: 647385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777045

RESUMO

Leprosy is an infectious disease that remains endemic in approximately 100 developing countries, where about 200,000 new cases are diagnosed each year. Moreover, multibacillary leprosy, the most contagious form of the disease, has been detected at continuously higher rates among Brazilian elderly people. Due to the so-called immunosenescence, characterized by several alterations in the quality of the immune response during aging, this group is more susceptible to infectious diseases. In view of such data, the purpose of our work was to investigate if age-related alterations in the immune response could influence the pathogenesis of leprosy. As such, we studied 87 individuals, 62 newly diagnosed and untreated leprosy patients distributed according to the age range and to the clinical forms of the disease and 25 healthy volunteers, who were studied as controls. The frequency of senescent and memory CD8+ leukocytes was assessed by immunofluorescence of biopsies from cutaneous lesions, while the serum levels of IgG anti-CMV antibodies were analyzed by chemiluminescence and the gene expression of T cell receptors' inhibitors by RT-qPCR. We noted an accumulation of memory CD8+ T lymphocytes, as well as reduced CD8+CD28+ cell expression in skin lesions from elderly patients, when compared to younger people. Alterations in LAG3 and PDCD1 gene expression in cutaneous lesions of young MB patients were also observed, when compared to elderly patients. Such data suggest that the age-related alterations of T lymphocyte subsets can facilitate the onset of leprosy in elderly patients, not to mention other chronic inflammatory diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Senescência Celular/imunologia , Memória Imunológica , Imunossenescência/imunologia , Hanseníase/imunologia , Mycobacterium leprae , Dermatopatias/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Antígenos CD/genética , Estudos de Casos e Controles , Citomegalovirus/imunologia , Feminino , Expressão Gênica , Humanos , Imunoglobulina G/sangue , Hanseníase/sangue , Hanseníase/microbiologia , Hanseníase/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , Pele/imunologia , Pele/patologia , Dermatopatias/sangue , Dermatopatias/microbiologia , Dermatopatias/patologia , Adulto Jovem , Proteína do Gene 3 de Ativação de Linfócitos
14.
PLoS Negl Trop Dis ; 15(3): e0009214, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690671

RESUMO

BACKGROUND: Leprosy continues to be a public health problem in Brazil. Furthermore, detection rates in elderly people have increased, particularly those of multibacillary (L-Lep) patients, who are responsible for transmitting M. leprae. Part of the decline in physiological function during aging is due to increased oxidative damage and change in T cell subpopulations, which are critical in defense against the disease. It is not still clear how age-related changes like those related to oxidation affect elderly people with leprosy. The aim of this work was to verify whether the elderly leprosy patients have higher ROS production and how it can impact the evolution of leprosy. METHODOLOGY/PRINCIPAL FINDINGS: 87 leprosy patients, grouped according to age range and clinical form of leprosy, and 25 healthy volunteers were analyzed. Gene expression analysis of antioxidant and oxidative burst enzymes were performed in whole blood using Biomark's microfluidic-based qPCR. The same genes were evaluated in skin lesion samples by RT-qPCR. The presence of oxidative damage markers (carbonylated proteins and 4-hydroxynonenal) was analyzed by a DNPH colorimetric assay and immunofluorescence. Carbonylated protein content was significantly higher in elderly compared to young patients. One year after multidrug therapy (MDT) discharge and M. leprae clearance, oxidative damage increased in young L-Lep patients but not in elderly ones. Both elderly T and L-Lep patients present higher 4-HNE in cutaneous lesions than the young, mainly surrounding memory CD8+ T cells. Furthermore, young L-Lep demonstrated greater ability to neutralize ROS compared to elderly L-Lep patients, who presented lower gene expression of antioxidant enzymes, mainly glutathione peroxidase. CONCLUSIONS/SIGNIFICANCE: We conclude that elderly patients present exacerbated oxidative damage both in blood and in skin lesions and that age-related changes can be an important factor in leprosy immunopathogenesis. Ultimately, elderly patients could benefit from co-supplementation of antioxidants concomitant to MDT, to avoid worsening of the disease.


Assuntos
Hansenostáticos/uso terapêutico , Hanseníase/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Aldeídos , Antioxidantes , Carga Bacteriana , Brasil , Estudos de Casos e Controles , Quimioterapia Combinada , Feminino , Humanos , Hansenostáticos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Mycobacterium leprae , Estresse Oxidativo , Carbonilação Proteica , Pele/metabolismo , Pele/patologia
15.
Microbes Infect ; 23(4-5): 104801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33582283

RESUMO

Acinetobacter baumannii is an important nosocomial pathogen. BamA is a protein that belongs to a complex responsible for organizing the proteins on the bacterial outer membrane. In this work, we aimed to evaluate murine immune responses to BamA recombinant protein (rAbBamA) from A. baumannii in an animal model of infection, and to assess cross-reactivity of this target for the development of anti-A. baumannii vaccines or diagnostics. Immunization of mice with rAbBamA elicited high antibody titers and antibody recognition of native A. baumannii BamA. Immunofluorescence also detected binding to the bacterial surface. After challenge, immunized mice demonstrated a 40% survival increase and better bacterial clearance in kidneys. Immunoblot of anti-rAbBamA against other medically relevant bacteria showed binding to proteins of approximately 35 kDa in Klebsiella pneumoniae and Escherichia coli lysates, primarily identified as OmpA and OmpC, respectively. Altogether, our data show that anti-rAbBamA antibodies provide a protective response against A. baumannii infection in mice. However, the response elicited by immunization with rAbBamA is not completely specific to A. baumannii. Although a broad-spectrum vaccine that protects against various pathogens is an appealing strategy, antibody reactivity against the human microbiota is undesired. In fact, immunization with rAbBamA produced noticeable effects on the gut microbiota. However, the changes elicited were small and non-specific, given that no significant changes in the abundance of Proteobacteria were observed. Overall, rAbBamA is a promising target, but specificity must be considered in the development of immunological tools against A. baumannii.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Acinetobacter baumannii/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Clonagem Molecular , DNA Bacteriano/química , Fezes/química , Feminino , Microbioma Gastrointestinal , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 16S/química , Proteínas Recombinantes/imunologia
17.
Microorganisms ; 8(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105542

RESUMO

Toxoplasma gondii is the causative agent of toxoplasmosis, an infectious disease that affects over 30% of the human world population, causing fatal infections in immunocompromised individuals and neonates. The life cycle of T. gondii is complex, and involves intermediate hosts (birds and mammals) and definitive hosts (felines, including domestic cats). The innate immune repertoire against the parasite involves the production of neutrophil extracellular traps (NET), and neutrophils from several intermediate hosts produce NET induced by T. gondii. However, the mechanisms underlying NET release in response to the parasite have been poorly explored. Therefore, the aims of this study were to investigate whether neutrophils from cats produce NET triggered by T. gondii and to understand the mechanisms thereby involved. Neutrophils from cats were stimulated with T. gondii tachyzoites and NET-derived DNA in the supernatant was quantified during the time. The presence of histone H1 and myeloperoxidase was detected by immunofluorescence. We observed that cat neutrophils produce both classical and rapid/early NET stimulated by T. gondii. Inhibition of elastase, intracellular calcium, and phosphatidylinositol 3-kinase (PI3K)-δ partially blocked classical NET release in response to the parasite. Electron microscopy revealed strands and networks of DNA in close contact or completely entrapping parasites. Live imaging showed that tachyzoites are killed by NET. We conclude that the production of NET is a conserved strategy to control infection by T. gondii amongst intermediate and definitive hosts.

18.
Sci Rep ; 10(1): 18296, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106528

RESUMO

To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Rhipicephalus/fisiologia , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos , Ovário/química , Gravidez , Rhipicephalus/genética , Saliva/química , Análise de Sequência de RNA
19.
Mem Inst Oswaldo Cruz ; 115: e200075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696914

RESUMO

BACKGROUND: Although Mycobacterium leprae (ML) is well characterised as the causative agent of leprosy, the pathophysiological mechanisms underlying peripheral nerve damage still need further understanding. In vitro and in vivo studies have yielded insights into molecular mechanisms of ML interaction with Schwann cells (SC), indicating the regulation of genes and proteins crucial to neural plasticity. OBJECTIVES: We aimed to investigate the effect of ML on neurotrophins expression in human SC (hSC) and mice sciatic nerves to better understand their role in leprosy neuropathy, and aiming to contribute to future therapeutic approaches. METHODS: We evaluated mRNA and protein expression of BDNF, NGF, NT-3, NT-4 in hSC from amputation nerve fragments, as well as in athymic nude mice, infected by ML for eight months. FINDINGS AND MAIN CONCLUSIONS: Our in vitro results showed a trend to decline in NGF and BDNF mRNA in ML-treated hSC, compared to controls. The immunodetection of BDNF and NT-4 was significantly downregulated in ML-treated hSC. Conversely, ML-infected mice demonstrated upregulation of NT-3, compared to non-infected animals. Our findings indicate that ML may be involved in neurotrophins regulation, suggesting that a pathogen-related imbalance of these growth factors may have a role in the neural impairment of leprosy.


Assuntos
Mycobacterium leprae , Fatores de Crescimento Neural/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Animais , Humanos , Camundongos , Camundongos Nus
20.
PLoS Negl Trop Dis ; 14(3): e0008060, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163415

RESUMO

The northeast (NE) region of Brazil commonly goes through drought periods, which favor cyanobacterial blooms, capable of producing neurotoxins with implications for human and animal health. The most severe dry spell in the history of Brazil occurred between 2012 and 2016. Coincidently, the highest incidence of microcephaly associated with the Zika virus (ZIKV) outbreak took place in the NE region of Brazil during the same years. In this work, we tested the hypothesis that saxitoxin (STX), a neurotoxin produced in South America by the freshwater cyanobacteria Raphidiopsis raciborskii, could have contributed to the most severe Congenital Zika Syndrome (CZS) profile described worldwide. Quality surveillance showed higher cyanobacteria amounts and STX occurrence in human drinking water supplies of NE compared to other regions of Brazil. Experimentally, we described that STX doubled the quantity of ZIKV-induced neural cell death in progenitor areas of human brain organoids, while the chronic ingestion of water contaminated with STX before and during gestation caused brain abnormalities in offspring of ZIKV-infected immunocompetent C57BL/6J mice. Our data indicate that saxitoxin-producing cyanobacteria is overspread in water reservoirs of the NE and might have acted as a co-insult to ZIKV infection in Brazil. These results raise a public health concern regarding the consequences of arbovirus outbreaks happening in areas with droughts and/or frequent freshwater cyanobacterial blooms.


Assuntos
Morte Celular/efeitos dos fármacos , Microcefalia/patologia , Intoxicação/complicações , Intoxicação/patologia , Saxitoxina/toxicidade , Infecção por Zika virus/complicações , Infecção por Zika virus/patologia , Animais , Toxinas Bacterianas/análise , Toxinas Bacterianas/toxicidade , Encéfalo/patologia , Brasil/epidemiologia , Células Cultivadas , Toxinas de Cianobactérias , Modelos Animais de Doenças , Surtos de Doenças , Feminino , Humanos , Incidência , Toxinas Marinhas/análise , Toxinas Marinhas/toxicidade , Camundongos Endogâmicos C57BL , Microcistinas/análise , Microcistinas/toxicidade , Modelos Teóricos , Neurotoxinas/análise , Neurotoxinas/toxicidade , Saxitoxina/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...