Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 45(11): 3013-3016, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479446

RESUMO

We demonstrate an efficient approach for enhancing the spectral broadening of long laser pulses and for efficient frequency redshifting by exploiting the intrinsic temporal properties of molecular alignment inside a gas-filled hollow-core fiber (HCF). We find that laser-induced alignment with durations comparable to the characteristic rotational time scale TRotAlign enhances the efficiency of redshifted spectral broadening compared to noble gases. The applicability of this approach to Yb lasers with (few hundred femtoseconds) long pulse duration is illustrated, for which efficient broadening based on conventional Kerr nonlinearity is challenging to achieve. Furthermore, this approach proposes a practical solution for high energy broadband long-wavelength light sources, and it is attractive for many strong field applications.

2.
Opt Lett ; 45(8): 2267-2270, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287210

RESUMO

We present a novel, to the best of our knowledge, approach for scaling the peak power of mid-infrared laser pulses with few-cycle duration and carrier-to-envelope phase stabilization. Using frequency domain optical parametric amplification (FOPA), selective amplification is performed on two spectral slices of broadband pulses centered at 1.8 µm wavelength. In addition to amplification, the Fourier plane is used for specific pulse shaping to control both the relative polarization and the phase/delay between the two spectral slices of the input pulses. At the output of the FOPA, intrapulse difference frequency generation provides carrier-envelope phase stabilized two-cycle pulses centered at 9.5 µm wavelength with 25.5 µJ pulse energy. The control of the carrier-envelope phase is demonstrated through the dependence of high-harmonic generation in solids. This architecture is perfectly adapted to be scaled in the future to high average and high peak powers using picosecond ytterbium laser technologies.

3.
Opt Express ; 25(22): 27706-27714, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092241

RESUMO

Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 µm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

4.
Sci Rep ; 7: 40058, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071764

RESUMO

We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with a length of 5 µm, a maximum 13.8 times enhancement in the THz pulse energy (in ≤20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies (≤20 THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20-200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets with a length of 60 µm. Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

5.
Opt Express ; 24(11): 11299-311, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410061

RESUMO

We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...