Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111531

RESUMO

Bone tissue engineering emerged as a solution to treat critical bone defects, aiding in tissue regeneration and implant integration. Mainly, this field is based on the development of scaffolds and coatings that stimulate cells to proliferate and differentiate in order to create a biologically active bone substitute. In terms of materials, several polymeric and ceramic scaffolds have been developed and their properties tailored with the objective to promote bone regeneration. These scaffolds usually provide physical support for cells to adhere, while giving chemical and physical stimuli for cell proliferation and differentiation. Among the different cells that compose the bone tissue, osteoblasts, osteoclasts, stem cells, and endothelial cells are the most relevant in bone remodeling and regeneration, being the most studied in terms of scaffold-cell interactions. Besides the intrinsic properties of bone substitutes, magnetic stimulation has been recently described as an aid in bone regeneration. External magnetic stimulation induced additional physical stimulation in cells, which in combination with different scaffolds, can lead to a faster regeneration. This can be achieved by external magnetic fields alone, or by their combination with magnetic materials such as nanoparticles, biocomposites, and coatings. Thus, this review is designed to summarize the studies on magnetic stimulation for bone regeneration. While providing information regarding the effects of magnetic fields on cells involved in bone tissue, this review discusses the advances made regarding the combination of magnetic fields with magnetic nanoparticles, magnetic scaffolds, and coatings and their subsequent influence on cells to reach optimal bone regeneration. In conclusion, several research works suggest that magnetic fields may play a role in regulating the growth of blood vessels, which are critical for tissue healing and regeneration. While more research is needed to fully understand the relationship between magnetism, bone cells, and angiogenesis, these findings promise to develop new therapies and treatments for various conditions, from bone fractures to osteoporosis.

2.
J Control Release ; 347: 89-103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513211

RESUMO

Nanoparticle mediated hyperthermia has been explored as a method to increase cancer treatment efficacy by heating tumours inside-out. With that purpose, nanoparticles have been designed and their properties tailored to respond to external stimuli and convert the supplied energy into heat, therefore inducing damage to tumour cells. Moreover, the combination of hyperthermia with chemotherapy has been described as a more effective strategy due to the synergy between the high temperature and the drug's effects, also associated with a remote controlled and on-demand drug release. In this review, the methods behind nanoparticle mediated hyperthermia, namely material design, external stimuli response and energy conversion will be discussed and critically analysed. We will address the most relevant studies on hyperthermia and temperature triggered drug release for cancer treatment. Finally, the advantages, difficulties and challenges of this therapeutic strategy will be discussed, while giving insight for future developments.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Hipertermia Induzida/métodos , Nanopartículas/uso terapêutico , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Int J Pharm ; 619: 121711, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35367583

RESUMO

Exemestane has a limited aqueous solubility that leads to a very high variability in absorption when administrated orally. It is crucial to develop strategies to increase the solubility and bioavailability of this drug. To overcome these issues, the aim of the present work was the development of magnetic silica mesoporous nanoparticles (IOMSNs) to carry and release exemestane. Furthermore, these nanoparticles could be also used as Magnetic Resonance Imaging (MRI) contrast agents for treatment monitorization and tumor detection. MRI analysis showed that IOMSNs present a concentration dependent contrast effect, revealing their potential for MRI applications. Also, IOMSNs present a very good polydispersity (0.224) and nanometric range size (137.2 nm). It was confirmed that the nucleus is composed by magnetite and the silica coating presents tubes with MCM-41-like hexagonal structure. Both iron oxide nanoparticles and iron oxide mesoporous silica nanoparticles were not toxic in cell culture for 24 h. Exemestane was successful released for 72 h following a typical sustained release pattern, achieving a very high loading capacity (37.7%) and in vitro release of 98.8%. Taking into account the results it is possible to conclude that IOMSNs have a high potential to be used as theranostic for intravenous breast cancer treatment with exemestane.


Assuntos
Neoplasias da Mama , Nanopartículas , Androstadienos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Meios de Contraste/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Nanopartículas/química , Porosidade , Medicina de Precisão , Dióxido de Silício/química
4.
Colloids Surf B Biointerfaces ; 146: 363-74, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27388965

RESUMO

Magnetic nanoparticles (MNPs) should be highly biocompatible, stable and safely eliminated from the body, and can therefore be successfully used in modern medicine. Synthetic hydroxyapatite (HAP) has well established biocompatible and non-inflammatory properties, as well as a highly stable and flexible structure that allows for an easy incorporation of magnetic ions. This study characterized and compared the in vitro cytotoxicity and hemocompatibility of hydroxyapatite MNPs doped with different ions (Gd(3+/)Fe(2+)/Fe(3+)/Co(2+)). HAP doped with 10% of Gd and Fe(III) presented the highest magnetic moments. Our results showed that Gd doped HAP nanoparticles are non-cytotoxic, hemocompatible, non-hemolytic and non-thrombogenic, in contrast with Fe(III) doped HAP that can be considered thrombogenic. For these reasons we propose that, Gd doped HAP nanoparticles have the most potential for application as a MRI contrast agents. However, use of Fe (III) doped HAP as MRI contrast agents should be further investigated.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Derme/citologia , Diagnóstico por Imagem/métodos , Durapatita/farmacologia , Endotélio Vascular/citologia , Hemólise/efeitos dos fármacos , Nanopartículas de Magnetita/química , Células Cultivadas , Derme/efeitos dos fármacos , Derme/metabolismo , Durapatita/química , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hemostáticos , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem
5.
Sci Technol Adv Mater ; 15(2): 025001, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877662

RESUMO

Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...