Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 188, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28775280

RESUMO

Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform 1H and 19F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 1012 19F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration.Nitrogen vacancy (NV) centres in diamond can be used for NMR spectroscopy, but increased sensitivity is needed to avoid long measurement times. Kehayias et al. present a nanostructured diamond grating with a high density of NV centres, enabling NMR spectroscopy of picoliter-volume solutions.


Assuntos
Diamante , Espectroscopia de Ressonância Magnética , Nanoestruturas
2.
Phys Rev Lett ; 103(15): 157202, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19905663

RESUMO

We have investigated the generation of spin waves in the free layer of an extended spin-valve structure with a nanoscaled point contact driven by both microwave and direct electric current using Brillouin light scattering microscopy. Simultaneously with the directly excited spin waves, strong nonlinear effects are observed, namely, the generation of eigenmodes with integer multiple frequencies (2f, 3f, 4f) and modes with noninteger factors (0.5f, 1.5f) with respect to the excitation frequency f. The origin of these nonlinear modes is traced back to three-magnon-scattering processes. The direct current influence on the generation of the fundamental mode at frequency f is related to the spin-transfer torque, while the efficiency of three-magnon-scattering processes is controlled by the Oersted field as an additional effect of the direct current.

3.
Opt Lett ; 32(8): 936-8, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17375159

RESUMO

We have developed a magneto-optical Kerr microscope that allows us to measure the ultrafast magnetization dynamics of ferromagnetic nanostructures. The magneto-optical signal can be recorded in a confocal reflection geometry with an accurate selection of the polarization. The magnetization dynamics is obtained from pump-probe measurements using frequency nondegenerate collinear pump and probe beams with a temporal resolution of 180 fs. Both probe and pump beams are focused to their diffraction limit, leading to an overall spatial resolution of 600 nm. The efficiency of the apparatus is tested by investigating the magnetization dynamics of individual CoPt(3) disks with a submicrometer diameter and a thickness of 15 nm.

4.
Phys Rev Lett ; 97(12): 127401, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-17025997

RESUMO

The ultrafast magnetization and electron dynamics of superparamagnetic cobalt nanoparticles, embedded in a dielectric matrix, have been investigated using femtosecond optical pulses. Our experimental approach allows us to bypass the superparamagnetic thermal fluctuations and to observe the trajectory of the magnetization vector which exhibits a strongly damped precession motion. The magnetization precession is damped faster in the superparamagnetic particles than in cobalt films or when the particle size decreases, suggesting that the damping is enhanced at the metal dielectric interface. Our observations question the gyroscopic nature of the magnetization pathway when superparamagnetic fluctuations take place as we discuss in the context of Brown's model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...