Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Surf ; 11: 100128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938582

RESUMO

Host recognition of the pathogen-associated molecular pattern (PAMP), ß-1,3-glucan, plays a major role in antifungal immunity. ß-1,3-glucan is an essential component of the inner cell wall of the opportunistic pathogen Candida albicans. Most ß-1,3-glucan is shielded by the outer cell wall layer of mannan fibrils, but some can become exposed at the cell surface. In response to host signals such as lactate, C. albicans shaves the exposed ß-1,3-glucan from its cell surface, thereby reducing the ability of innate immune cells to recognise and kill the fungus. We have used sets of barcoded xog1 and eng1 mutants to compare the impacts of the secreted ß-glucanases Xog1 and Eng1 upon C. albicans in vitro and in vivo. Flow cytometry of Fc-dectin-1-stained strains revealed that Eng1 plays the greater role in lactate-induced ß-1,3-glucan masking. Transmission electron microscopy and stress assays showed that neither Eng1 nor Xog1 are essential for cell wall maintenance, but the inactivation of either enzyme compromised fungal adhesion to gut and vaginal epithelial cells. Competitive barcode sequencing suggested that neither Eng1 nor Xog1 strongly influence C. albicans fitness during systemic infection or vaginal colonisation in mice. However, the deletion of XOG1 enhanced C. albicans fitness during gut colonisation. We conclude that both Eng1 and Xog1 exert subtle effects on the C. albicans cell surface that influence fungal adhesion to host cells and that affect fungal colonisation in certain host niches.

2.
mBio ; 15(2): e0189823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38259065

RESUMO

Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, ß-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced ß-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced ß-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger ß-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences ß-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (ß-1,3-glucan) at its cell surface. Most of the ß-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some ß-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases ß-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to ß-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in ß-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates ß-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.


Assuntos
Candida albicans , Glucanos , beta-Glucanas , Humanos , Candida albicans/metabolismo , Glucanos/metabolismo , Dióxido de Carbono/metabolismo , Moléculas com Motivos Associados a Patógenos , Hipóxia/metabolismo , Lactatos/metabolismo , Parede Celular/metabolismo
3.
PLoS Pathog ; 19(7): e1011505, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428810

RESUMO

Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.


Assuntos
Candida albicans , Glucose , Humanos , Animais , Camundongos , Glucose/metabolismo , Estresse Oxidativo/fisiologia , Neutrófilos , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo
4.
mBio ; 13(6): e0260522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36218369

RESUMO

Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as ß-1,3-glucan. In C. albicans, most ß-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some ß-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed ß-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that ß-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed ß-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces ß-1,3-glucan exposure at bud scars and at punctate foci. ß-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates ß-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that ß-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP ß-1,3-glucan, which is an essential component of its cell wall. Most of this ß-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed ß-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of ß-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that ß-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.


Assuntos
Candida albicans , beta-Glucanas , Antifúngicos/farmacologia , beta-Glucanas/metabolismo , Parede Celular/metabolismo , Cicatriz/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucanos/metabolismo , Lactatos/metabolismo , Moléculas com Motivos Associados a Patógenos
5.
Cell Surf ; 8: 100084, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36299406

RESUMO

The immunogenicity of Candida albicans cells is influenced by changes in the exposure of microbe-associated molecular patterns (MAMPs) on the fungal cell surface. Previously, the degree of exposure on the C. albicans cell surface of the immunoinflammatory MAMP ß-(1,3)-glucan was shown to correlate inversely with colonisation levels in the gastrointestinal (GI) tract. This is important because life-threatening systemic candidiasis in critically ill patients often arises from translocation of C. albicans strains present in the patient's GI tract. Therefore, using a murine model, we have examined the impact of gut-related factors upon ß-glucan exposure and colonisation levels in the GI tract. The degree of ß-glucan exposure was examined by imaging flow cytometry of C. albicans cells taken directly from GI compartments, and compared with colonisation levels. Fungal ß-glucan exposure was lower in the cecum than the small intestine, and fungal burdens were correspondingly higher in the cecum. This inverse correlation did not hold for the large intestine. The gut fermentation acid, lactate, triggers ß-glucan masking in vitro, leading to attenuated anti-Candida immune responses. Additional fermentation acids are present in the GI tract, including acetate, propionate, and butyrate. We show that these acids also influence ß-glucan exposure on C. albicans cells in vitro and, like lactate, they influence ß-glucan exposure via Gpr1/Gpa2-mediated signalling. Significantly, C. albicans gpr1Δ gpa2Δ cells displayed elevated ß-glucan exposure in the large intestine and a corresponding decrease in fungal burden, consistent with the idea that Gpr1/Gpa2-mediated ß-glucan masking influences colonisation of this GI compartment. Finally, extracts from the murine gut and culture supernatants from the mannan grazing gut anaerobe Bacteroides thetaiotaomicron promote ß-glucan exposure at the C. albicans cell surface. Therefore, the local microbiota influences ß-glucan exposure levels directly (via mannan grazing) and indirectly (via fermentation acids), whilst ß-glucan masking appears to promote C. albicans colonisation of the murine large intestine.

6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876755

RESUMO

Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.


Assuntos
Candida albicans/patogenicidade , Hifas/citologia , Macrófagos/metabolismo , Fagocitose , Quinases Proteína-Quinases Ativadas por AMP , Actomiosina/metabolismo , Animais , Antígenos CD18/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Humanos , Hifas/patogenicidade , Lectinas Tipo C/metabolismo , Macrófagos/microbiologia , Camundongos , Proteínas Quinases/metabolismo , Células RAW 264.7
7.
Trends Microbiol ; 29(5): 416-427, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33059975

RESUMO

In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.


Assuntos
Fungos/imunologia , Fungos/patogenicidade , Evasão da Resposta Imune , Estresse Fisiológico/imunologia , Animais , Fungos/classificação , Interações Hospedeiro-Patógeno , Humanos , Micoses/imunologia , Micoses/microbiologia
8.
mBio ; 11(4)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636248

RESUMO

The cell wall provides a major physical interface between fungal pathogens and their mammalian host. This extracellular armor is critical for fungal cell homeostasis and survival. Fungus-specific cell wall moieties, such as ß-1,3-glucan, are recognized as pathogen-associated molecular patterns (PAMPs) that activate immune-mediated clearance mechanisms. We have reported that the opportunistic human fungal pathogen Candida albicans masks ß-1,3-glucan following exposure to lactate, hypoxia, or iron depletion. However, the precise mechanism(s) by which C. albicans masks ß-1,3-glucan has remained obscure. Here, we identify a secreted exoglucanase, Xog1, that is induced in response to lactate or hypoxia. Xog1 functions downstream of the lactate-induced ß-glucan "masking" pathway to promote ß-1,3-glucan "shaving." Inactivation of XOG1 blocks most but not all ß-1,3-glucan masking in response to lactate, suggesting that other activities contribute to this phenomenon. Nevertheless, XOG1 deletion attenuates the lactate-induced reductions in phagocytosis and cytokine stimulation normally observed for wild-type cells. We also demonstrate that the pharmacological inhibition of exoglucanases undermines ß-glucan shaving, enhances the immune visibility of the fungus, and attenuates its virulence. Our study establishes a new mechanism underlying environmentally induced PAMP remodeling that can be manipulated pharmacologically to influence immune recognition and infection outcomes.IMPORTANCE The immune system plays a critical role in protecting us against potentially fatal fungal infections. However, some fungal pathogens have evolved evasion strategies that reduce the efficacy of our immune defenses. Previously, we reported that the fungal pathogen Candida albicans exploits specific host-derived signals (such as lactate and hypoxia) to trigger an immune evasion strategy that involves reducing the exposure of ß-glucan at its cell surface. Here, we show that this phenomenon is mediated by the induction of a major secreted exoglucanase (Xog1) by the fungus in response to these host signals. Inactivating XOG1-mediated "shaving" of cell surface-exposed ß-glucan enhances immune responses against the fungus. Furthermore, inhibiting exoglucanase activity pharmacologically attenuates C. albicans virulence. In addition to revealing the mechanism underlying a key immune evasion strategy in a major fungal pathogen of humans, our work highlights the potential therapeutic value of drugs that block fungal immune evasion.


Assuntos
Candida albicans/imunologia , Epitopos/imunologia , Evasão da Resposta Imune , Anaerobiose , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Celulose 1,4-beta-Celobiosidase/antagonistas & inibidores , Celulose 1,4-beta-Celobiosidase/metabolismo , Ácido Láctico/farmacologia , Larva/microbiologia , Macrófagos/microbiologia , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos C57BL , Mariposas/microbiologia
9.
Fungal Biol ; 124(5): 475-481, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389310

RESUMO

The model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, display Core Environmental Responses (CERs) that include the induction of a core set of stress genes in response to diverse environmental stresses. CERs underlie the phenomenon of stress cross-protection, whereby exposure to one type of stress can provide protection against subsequent exposure to a second type of stress. CERs have probably arisen through the accumulation, over evolutionary time, of protective anticipatory responses ("adaptive prediction"). CERs have been observed in other evolutionarily divergent fungi but, interestingly, not in the pathogenic yeast, Candida albicans. We argue that this is because we have not looked in the right place. In response to specific host inputs, C. albicans does activate anticipatory responses that protect it against impending attack from the immune system. Therefore, we suggest that C. albicans has evolved a CER that reflects the environmental challenges it faces in host niches.


Assuntos
Evolução Biológica , Meio Ambiente , Estresse Fisiológico , Leveduras , Candida albicans/fisiologia , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/fisiologia , Leveduras/fisiologia
10.
Curr Top Microbiol Immunol ; 425: 297-330, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31781866

RESUMO

The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.


Assuntos
Candida albicans/citologia , Candida albicans/imunologia , Parede Celular/imunologia , Candida albicans/patogenicidade , Candidíase/imunologia , Candidíase/microbiologia , Humanos
11.
Nat Commun ; 10(1): 5315, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757950

RESUMO

To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), ß-glucan. Certain nutrients, stresses and antifungal drugs trigger ß-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce ß-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced ß-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation.


Assuntos
Candida albicans/metabolismo , Citocinas/imunologia , Evasão da Resposta Imune/fisiologia , Ferro/metabolismo , Macrófagos/imunologia , Fagocitose/imunologia , beta-Glucanas/metabolismo , Animais , Candida albicans/imunologia , Parede Celular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Transdução de Sinais , beta-Glucanas/imunologia
12.
mBio ; 9(6)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401773

RESUMO

Organisms must adapt to changes in oxygen tension if they are to exploit the energetic benefits of reducing oxygen while minimizing the potentially damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms display robust adaptation to hypoxia (low oxygen levels). This is particularly important for fungal pathogens that colonize hypoxic niches in the host. We show that adaptation to hypoxia in the major fungal pathogen of humans Candida albicans includes changes in cell wall structure and reduced exposure, at the cell surface, of ß-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to reduced phagocytosis by murine bone marrow-derived macrophages and decreased production of IL-10, RANTES, and TNF-α by peripheral blood mononuclear cells, suggesting that hypoxia-induced ß-glucan masking has a significant effect upon C. albicans-host interactions. We show that hypoxia-induced ß-glucan masking is dependent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The decrease in ß-glucan exposure is blocked by mutations that affect mitochondrial functionality (goa1Δ and upc2Δ) or that decrease production of hydrogen peroxide in the inner membrane space (sod1Δ). Furthermore, ß-glucan masking is enhanced by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The ß-glucan masking defects displayed by goa1Δ and upc2Δ cells are suppressed by exogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or PKA (tpk1Δ tpk2Δ) block the masking phenotype. Our data suggest that C. albicans responds to hypoxic niches by inducing ß-glucan masking via a mitochondrial cAMP-PKA signaling pathway, thereby modulating local immune responses and promoting fungal colonization.IMPORTANCE Animal, plant, and fungal cells occupy environments that impose changes in oxygen tension. Consequently, many species have evolved mechanisms that permit robust adaptation to these changes. The fungal pathogen Candida albicans can colonize hypoxic (low oxygen) niches in its human host, such as the lower gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must also evade local immune defenses. We reveal, for the first time, a defined link between hypoxic adaptation and immune evasion in C. albicans As this pathogen adapts to hypoxia, it undergoes changes in cell wall structure that include masking of ß-glucan at its cell surface, and it becomes better able to evade phagocytosis by innate immune cells. We also define the signaling mechanisms that mediate hypoxia-induced ß-glucan masking, showing that they are dependent on mitochondrial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to trigger immune evasion in this fungal pathogen.


Assuntos
Candida albicans/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipóxia/imunologia , Evasão da Resposta Imune , Mitocôndrias/metabolismo , beta-Glucanas/metabolismo , Animais , Candida albicans/patogenicidade , Parede Celular/metabolismo , Quimiocina CCL5/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-10/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Transdução de Sinais/imunologia
13.
J Clin Microbiol ; 55(4): 1162-1176, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28122875

RESUMO

Exophiala is a ubiquitous pleomorphic genus comprising at least 40 species, many of which have been associated with superficial, visceral, or systemic infections in humans, other mammals, or cold-blooded animals. In this study, we investigated the potential of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. A total of 89 isolates (including 50 human and 4 animal clinical isolates) stored in the National Collection of Pathogenic Fungi were identified by PCR amplification and sequencing of internal transcribed spacer region 1. Eighty-three of the isolates corresponded to 16 known species within Exophiala/Rhinocladiella The remaining six isolates are shown by phylogenetic analyses based on four loci to represent two novel Exophiala species. Four isolates from domestic bathrooms which form a sister species with Exophiala lecanii-corni are described here as Exophiala lavatrina sp. nov. The remaining two isolates, both from subcutaneous infections, are distantly related to Exophiala oligosperma and are described here as Exophiala campbellii sp. nov. The triazoles and terbinafine exhibited low MICs against all Exophiala isolates in vitro MALDI-TOF MS successfully distinguished all 18 species and identified all isolates after appropriate reference spectra were created and added to commercial databases. Intraspecific mean log scores ranged from 1.786 to 2.584 and were consistently significantly higher than interspecific scores (1.193 to 1.624), with the exception of E. lecanii-corni and E. lavatrina, for which there was considerable log score overlap. In summary, MALDI-TOF MS allows the rapid and accurate identification of a wide range of clinically relevant Exophiala species.


Assuntos
Exophiala/classificação , Exophiala/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Antifúngicos/farmacologia , Azóis/farmacologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Microbiologia Ambiental , Exophiala/química , Exophiala/genética , Humanos , Testes de Sensibilidade Microbiana , Micoses/microbiologia , Naftalenos/farmacologia , Filogenia , Análise de Sequência de DNA , Terbinafina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...