Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 7(1): txad043, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37250343

RESUMO

The objective of this study was to develop near infrared spectroscopy (NIRS) calibrations to predict fecal nutrient composition, intake, and diet digestibility from beef cattle fed high forage diets. Heifers were fed 12 different forage-based diets (>95% forage dry matter basis) in 3 total collection digestibility studies, resulting in individual fecal samples and related spectra (n = 135), corresponding nutrient intake, and apparent total tract digestibility (aTTD) data. Fecal samples were also collected from steers grazing two annual and two perennial forage mixtures over two growing seasons. Samples (n = 13/paddock) were composited by paddock resulting in 30 samples from year 1, and 24 from year 2. The grazing fecal spectra (n = 54) were added to the existing fecal composition spectral library. Dried and ground fecal samples were scanned using a FOSS DS2500 scanning monochromator (FOSS, Eden Prairie, MN). Spectra were mathematically treated for detrend and scatter correction and modified partial least squares (MPLS) regression was performed. The coefficient of determination for cross validation (R2cv) and standard error of cross validation (SECV) were used to evaluate the quality of calibrations. Prediction equations were developed for fecal composition [organic matter (OM), nitrogen (N), amylase-treated ash-corrected neutral detergent fiber (aNDFom), acid detergent fiber (ADF), acid detergent lignin (ADL), undigestible NDF after 240 h of in vitro incubation (uNDF), calcium (Ca), and phosphorus (P)], digestibility [DM, OM, aNDFom, N], and intake [DM, OM, aNDFom, N, uNDF]. The calibrations for fecal OM, N, aNDFom, ADF, ADL, uNDF, Ca, P resulted in R2cv between 0.86 and 0.97 and SECV of 1.88, 0.07, 1.70, 1.10, 0.61, 2.00, 0.18, and 0.06, respectively. Equations predicting intake of DM, OM, N, aNDFom, ADL, and uNDF resulted in R2cv values between 0.59 and 0.91, SECV values of 1.12, 1.10, 0.02, 0.69, 0.06, 0.24 kg·d-1, respectively, and SECV values between 0.00 and 0.16 when expressed as % body weight (BW). Digestibility calibrations for DM, OM, aNDFom, and N resulted in R2cv ranging from 0.65 to 0.74 and SECV values from 2.20 to 2.82. We confirm the potential of NIRS to predict fecal chemical composition, digestibility, and intake of cattle fed high forage diets. Future steps include validation of the intake calibration equations for grazing cattle using forage internal marker and modelling energetics of grazing growth performance.

3.
Front Genet ; 14: 1026601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741324

RESUMO

This 2-year study evaluated differences in circadian parameters obtained from measures of core body temperatures using telemetric reticulo-rumen and rectal devices during two winter feeding regimes in western Canada. The study also estimated phenotypic correlations and genetic parameters associated with circadian parameters and other production traits in each feeding regime. Each year, 80 weaned steer calves (initial age: 209 ± 11 days; BW: 264 ± 20 kg) from the same cohort were tested over two successive regimes, Fall-Winter (FW) and Winter-Spring (WS) at Lanigan, Saskatchewan, Canada. The steers received forage-based rations in both regimes where the individual feed intake was measured with automatic feeding units. During the trial, the reticulo-rumen (RTMP) and rectal (RCT) temperatures were simultaneously measured every 5 min using telemetric devices. These were used to calculate the circadian parameters (Midline Estimating Statistic Of Rhythms, amplitude, and acrophase/peak time) for both temperature measures. Growth and efficiency performance traits were also determined for all steers. Each steer was assigned into inefficient, neutral, and efficient classes based on the SD of the residual feed intake (RFI), residual gain (RG), and residual intake and gain (RIG) within each year and feeding regime. Higher (p < 0.0003) RTMP and rectal temperature MESORs were observed in the Fall-Winter compared to the Winter-Spring regime. While the two test regimes were different (p < 0.05) for the majority of the RTMP or RCT temperature parameters, they did not differ (p > 0.10) with the production efficiency profiles. The heritability estimates were higher in FW (0.78 ± 0.18 vs. 0.56 ± 0.26) than WS (0.50 ± 0.18 vs. 0.47 ± 0.22) for the rumen and rectal MESORs, respectively. There were positive genetic correlations between the two regimes for the RTMP (0.69 ± 0.21) and RCT (0.32 ± 0.59). There was a negative correlation (p < 0.001) between body temperature and ambient temperature. The high heritability estimates and genetic correlations for rumen and rectal temperature parameters demonstrate their potential as beef genetic improvement tools of economic traits associated with the parameters. However, there are limited practical implications of using only the core-body temperature as a proxy for production efficiency traits for beef steers during winter.

4.
Transl Anim Sci ; 4(1): 149-158, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32704975

RESUMO

The objective of this study was to evaluate the stage of maturity at harvest for pea hay (Pisum sativum L., c.v. CDC Horizon) on dry matter intake (DMI), eating behavior, ruminal fermentation, and digestibility when fed to beef heifers. Pea hay was cut at EARLY (defined to occur when flat pods were on one or more nodes), MID (when seeds filled the pods at one or more nodes and the leaves were changing from green to gold), and LATE (yellow dry seeds filled pods on most or all of the nodes and the pods and leaves had a yellow color) phases, and was cured in the field and baled. Six ruminally-cannulated Speckle Park heifers were used in a replicated 3 × 3 Latin square design with three 18-d periods including 12 d for adaptation, 2 d for measurement of ruminal pool sizes, and 4 d for the collection of eating behavior, ruminal pH, ruminal digesta, and feces. For all treatments, the respective pea hay was included at 40% of the dietary DM. Stage of maturity at harvest for pea hay did not affect total DMI, pea hay DMI, or the total short-chain fatty acid concentration in ruminal fluid with averages of 8.6 kg/d, 3.2 kg/d, and 96.55 mM, respectively. The duration of time spent ruminating decreased with advancing pea hay maturity when reported as min/d, min/kg DMI, and min/kg neutral detergent fiber (NDF) (P ≤ 0.01). Mean ruminal pH also decreased with advancing pea maturity (P < 0.01). The ruminal DM and undigested NDF corrected for OM pools were not affected by stage of maturity (P ≥ 0.55) nor was the rate of digestion for NDF. However, NDF passage rate decreased by 0.21%/h with advancing pea hay maturity (P = 0.02). Apparent total tract digestibility of NDF (average = 16.30%, P = 0.41) was not affected, but starch digestibility decreased from 96.10% to 93.08% with advancing pea hay maturity (P = 0.07). Overall, stage of maturity at harvest for pea hay does not appear to affect DMI or NDF digestibililty but decreases chewing activity, apparent total tract starch digestibility, ruminal pH, and ruminal NDF passage rate.

5.
J Anim Sci ; 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31233128

RESUMO

A study was conducted to evaluate the effects of level and source of fat in the diet of gestating beef cows on the postpartum performance of the dam and the progeny. Each year, 75 mature pregnant (183 ± 4.8 d until calving) Angus cows with similar BW (663 ± 21.5 kg) and BCS (2.6 ± 0.12; 1 to 5 scale) were randomly assigned to 1 of 15 outdoor pens. Each pen was assigned to 1 of 3 iso-caloric and iso-nitrogenous treatments: a low-fat diet (LF; 1.4 ± 0.12% EE) and two high-fat diets (HF; 3.3 ± 0.20% EE) including a canola seed- (CAN) or a flaxseed (FLX)-based pelleted feed. Diets were formulated to meet the requirements of pregnant beef cows and fed until calving. Data were analyzed as a randomized complete block design with contrasts for the effects of level (LF vs. HF) and source (CAN vs. FLX) of fat. No differences (P ≥ 0.21) were found for BW or calving to weaning ADG of cows. The average BCS during the first 42 d of lactation was greater (P<0.01) for LF compared with HF (2.63 vs. 2.51) with no difference (P = 0.35) for CAN vs. FLX cows. Subcutaneous fat thickness over the ribs was greater (P ≤ 0.01) for LF compared with that of HF cows at calving (5.7 vs. 4.3 mm) and at weaning (4.3 vs. 3.7 mm) with no difference (P ≥ 0.11) for CAN vs. FLX cows. Over the first 42 d of lactation, no difference (P ≥ 0.23) was observed for 12-h milk yield. Milk protein concentration was greater (P = 0.03) for CAN compared with FLX (3.11 vs. 3.01%) cows, whereas no difference (P ≥ 0.28) was observed for any other milk component. Milk fat from FLX cows had greater (P < 0.01) CLA and CLnA concentrations than that of CAN cows during the first 42 d of lactation. Pregnancy rate of HF cows tended (P = 0.07) to be greater than that of LF cows with no difference (P = 0.77) for CAN vs. FLX cows. Calves from HF cows were heavier (P ≤ 0.01) at birth (42.9 vs. 40.2 kg) than those from LF cows. From calving to weaning, ADG of calves born to CAN cows was greater (P = 0.03) that that of calves born to FLX cows (1.19 vs. 1.13 kg/d) with no difference (P = 0.18) for calves born to LF vs. HF cows. At slaughter, progeny of HF cows had greater (P ≤ 0.03) shrunk BW (605 vs. 579 kg) and HCW (355 vs. 339 kg) compared with those from LF cows with no difference (P ≥ 0.16) for progeny of CAN vs. FLX cows. These results show that feeding a HF diet over gestation results in heavier calves at birth and at slaughter, and superior calf gains from birth to slaughter as well as heavier carcasses, possibly due to a developmental programming effect.

6.
J Anim Sci ; 97(7): 3103-3119, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31095685

RESUMO

A 2-yr study was conducted to evaluate the effects of level and source of fat in the diet of gestating beef cows on their prepartum performance and birth weight of progeny. Each year, 75 multiparous (≥3 calving) pregnant Angus cows were stratified by BW (663 ± 21.5 kg) and BCS (2.6 ± 0.12; 1 to 5 scale) and randomly assigned to 1 of 15 outdoor pens. Subsequently, each pen was randomly assigned to 1 of 3 (n = 5) treatments: a low-fat diet (LF; 1.4 ± 0.12% EE) consisting of grass-legume hay, barley straw, and barley grain, or 1 of 2 high-fat diets (HF; 3.3 ± 0.20% EE) that included either a canola seed (CAN) or a flaxseed (FLX) based pelleted feed. Diets were formulated to meet the requirements of pregnant beef cows during the last 2 trimesters of gestation (0.183 ± 4.8 d), adjusted for changes in environmental conditions, and offered such that each pen on average received similar daily amounts of DE (31.2 ± 2.8 Mcal/cow), CP (1.36 ± 0.13 kg/cow), and DM (12.9 ± 1.0 kg/cow). Data were analyzed as a randomized complete block design with contrasts to separate the effects of level (LF vs. HF) and source (CAN vs. FLX) of fat. After 160 d on trial, conceptus corrected-BW (CC-BW) of LF cows (708 kg) and the proportion of overconditioned cows (13.2%) were greater (P ≤ 0.04) than those of HF, with no difference (P ≥ 0.84) between CAN and FLX for CC-BW (697 kg) and proportion of overconditioned cows (3.6% vs. 2.9%). Feeding FLX diet during gestation resulted in cows with a greater (P ≤ 0.01) concentration of conjugated linolenic acid (0.12% vs. 0.05%) and n-3 (0.58% vs. 0.37%) fatty acids, and a tendency (P = 0.09) for conjugated linoleic acid concentration (1.05% vs. 0.88%) to be greater in subcutaneous adipose tissue (SCAT) when compared with cows fed the CAN diet. By the end of gestation, serum NEFA concentration of LF cows (592 µEq/L) was lower (P < 0.01) than that of HF cows, and FLX cows had greater (P < 0.01) serum NEFA concentration than CAN cows (636 vs. 961 µEq/L). Cows receiving the LF diet during gestation gave birth to lighter (P < 0.01) calves compared with those receiving the HF diets (40.2 vs. 42.9 kg), with no difference (P = 0.24) between calves born to CAN (42.4 kg) and FLX (43.3 kg) cows. In conclusion, these results suggest a partitioning of the ME in pregnant beef cows that is dependent on the type of dietary energy, resulting in heavier calves at birth for cows fed high-fat diets. Also, the type of fatty acid in the diet of gestating beef cows affected the fatty acid profile in SCAT and serum NEFA concentration.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Suplementos Nutricionais/análise , Metabolismo Energético , Ácidos Graxos/metabolismo , Animais , Peso ao Nascer , Dieta/veterinária , Ingestão de Alimentos , Fabaceae , Feminino , Linho , Parto , Poaceae , Gravidez , Distribuição Aleatória , Sementes , Desmame , Ácido alfa-Linolênico/metabolismo
7.
J Anim Sci ; 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31095708

RESUMO

A study was conducted to evaluate the effects of level and source of fat in the diet of gestating beef cows on the postpartum performance of the dam and the progeny. Each year, 75 mature pregnant (183±4.8 d until calving) Angus cows with similar BW (663±21.5 kg) and BCS (2.6±0.12; 1 to 5 scale) were randomly assigned to one of 15 outdoor pens. Each pen was assigned to one of three iso-caloric and iso-nitrogenous treatments: a low-fat diet (LF; 1.4±0.12% EE), and two high-fat diets (HF; 3.3±0.20% EE) including a canola seed (CAN) or a flaxseed (FLX) based pelleted feed. Diets were formulated to meet the requirements of pregnant beef cows and fed until calving. Data were analyzed as a randomized complete block design with contrasts for the effects of level (LF vs. HF) and source (CAN vs. FLX) of fat. No differences (P≥0.21) were found for BW or calving to weaning ADG of cows. The average BCS during the first 42 d of lactation was greater (P<0.01) for LF compared to HF (2.63 vs. 2.51) with no difference (P=0.35) for CAN vs. FLX cows. Subcutaneous fat thickness over the ribs was greater (P≤0.01) for LF compared to that of HF cows at calving (5.7 vs. 4.3 mm) and at weaning (4.3 vs. 3.7 mm) with no difference (P≥0.11) for CAN vs. FLX cows. Over the first 42 d of lactation, no difference (P≥0.23) was observed for 12-h milk yield. Milk protein concentration was greater (P=0.03) for CAN compared to FLX (3.11 vs. 3.01%) cows while no difference (P≥0.28) was observed for any other milk component. Milk fat from FLX cows had greater (P < 0.01) CLA and CLnA concentrations than that of CAN cows during the first 42 d of lactation. Pregnancy rate of HF cows tended (P=0.07) to be greater than that of LF cows with no difference (P=0.77) for CAN vs. FLX cows. Calves from HF cows were heavier (P≤0.01) at birth (42.9 vs. 40.2 kg) than those from LF cows. From calving to weaning, ADG of calves born to CAN cows was greater (P=0.03) that that of calves born to FLX cows (1.19 vs. 1.13 kg/d) with no difference (P=0.18) for calves born to LF vs. HF cows. At slaughter, progeny of HF cows had greater (P≤0.03) shrunk BW (605 vs. 579 kg) and HCW (355 vs. 339 kg) compared to those from LF cows with no difference (P≥0.16) for progeny of CAN vs. FLX cows. These results show that feeding a HF diet over gestation results in heavier calves at birth and at slaughter, and superior calf gains from birth to slaughter as well as heavier carcasses, possibly due to a developmental programming effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...