Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 750: 141693, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846253

RESUMO

Extreme rainfall events are predicted to become more frequent with climate change and can have a major bearing on instream solute and pollutant transport in mineralised catchments. The Coledale Beck catchment in north-west England was subject to an extreme rainfall event in December 2015 that equated to a 1 in 200-year event. The catchment contains the UK's first passive metal mine water treatment system, and as such had been subject to intense monitoring of solute dynamics before and after commissioning. Due to this monitoring record, the site provides a unique opportunity to assess the effects of a major storm event on (1) catchment-scale solute transport, and (2) the resilience of the new and novel passive treatment system to extreme events. Monitoring suggests a modest decline in treatment efficiency over time that is not synchronous with the storm event and explained instead by changes in system hydraulic efficiency. There was no apparent flushing of the mine system during the event that could potentially have compromised treatment system performance. Analysis of metal transport in the catchment downstream of the mine suggests relatively subtle changes in instream chemistry with modest but statistically-significant reductions in zinc in the lower catchment irrespective of flow condition after the extreme event, but most parameters of interest show no significant change. Increased export of colloidal iron and aluminium is associated with major landslips in the mid-catchment after the storm and provide fresh sorption sites to attenuate dissolved zinc more rapidly in these locations, corroborated by laboratory experiments utilising site materials to investigate the attenuation/release of metals from stream and terrestrial sediments. The data are important as they show both the resilience of passive mine water treatment systems to extreme events and the importance of catchment-scale monitoring to ensure continued effectiveness of treatment initiatives after major perturbation.

2.
Sci Rep ; 9(1): 3313, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824739

RESUMO

Improving stream water quality in agricultural landscapes is an ecological priority and a legislative duty for many governments. Ecosystem health can be effectively characterised by organisms sensitive to water quality changes such as diatoms, single-celled algae that are a ubiquitous component of stream benthos. Diatoms respond within daily timescales to variables including light, temperature, nutrient availability and flow conditions that result from weather and land use characteristics. However, little consideration has been given to the ecological dynamics of diatoms through repeated seasonal cycles when assessing trajectories of stream function, even in catchments actively managed to reduce human pressures. Here, six years of monthly diatom samples from three independent streams, each receiving differing levels of diffuse agricultural pollution, reveal robust and repeated seasonal variation. Predicted seasonal changes in climate-related variables and anticipated ecological impacts must be fully captured in future ecological and water quality assessments, if the apparent resistance of stream ecosystems to pollution mitigation measures is to be better understood.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Ecossistema , Rios/microbiologia , Estações do Ano , Microbiologia da Água
3.
J Environ Manage ; 228: 267-278, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30227339

RESUMO

Recognition of the need to manage the water environment in more holistic ways has resulted in the global growth of Integrated Catchment Management (ICM). ICM is characterised by horizontal integration, encouraging interdisciplinary working between traditionally disparate management sectors, alongside vertical integration, characterised by the engagement of communities; central is the promotion of participatory governance and management decision-making. ICM has been translated into policy through, for example, the EU Water Framework Directive and at a national level by policies such as the Catchment Based Approach in England. Research exploring the implementation of these policies has reported success at a catchment level, but further research is required to explore practices of management at local level within catchments. This paper presents the findings of participatory research undertaken with a catchment partnership in the northeast of England to explore the integration of top-down policy translation with how local communities interact with management agencies at sub-catchment scale (a bottom-up perspective). The research found that supra-catchment scale drivers dominate the vertical interplay between management systems at more local levels. These drivers embed traditional practices of management, which establishes public participation as a barrier to delivery of top-down management objectives, resulting in practices that exclude communities and participatory movements at the local level. Although collaboration between agencies at the partnership scale offers a potential solution to overcoming these obstacles, the paper recommends changes to supra-catchment governance structures to encourage flexibility in developing local participatory movements as assets. Further research is necessary to develop new practices of management to integrate local people more effectively into the management process.


Assuntos
Participação da Comunidade , Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Inglaterra
4.
Environ Sci Process Impacts ; 16(7): 1629-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24647601

RESUMO

Headwater streams are an important feature of the landscape, with their diversity in structure and associated ecological function providing a potential natural buffer against downstream nutrient export. Phytobenthic communities, dominated in many headwaters by diatoms, must respond to physical and chemical parameters that can vary in magnitude within hours, whereas the ecological regeneration times are much longer. How diatom communities develop in the fluctuating, dynamic environments characteristic of headwaters is poorly understood. Deployment of near-continuous monitoring technology in sub-catchments of the River Eden, NW England, provides the opportunity for measurement of temporal variability in stream discharge and nutrient resource supply to benthic communities, as represented by monthly diatom samples collected over two years. Our data suggest that the diatom communities and the derived Trophic Diatom Index, best reflect stream discharge conditions over the preceding 18-21 days and Total Phosphorus concentrations over a wider antecedent window of 7-21 days. This is one of the first quantitative assessments of long-term diatom community development in response to continuously-measured stream nutrient concentration and discharge fluctuations. The data reveal the sensitivity of these headwater communities to mean conditions prior to sampling, with flow as the dominant variable. With sufficient understanding of the role of antecedent conditions, these methods can be used to inform interpretation of monitoring data, including those collected under the European Water Framework Directive and related mitigation efforts.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Monitoramento Ambiental , Rios/química , Animais , Organismos Aquáticos/classificação , Diatomáceas/crescimento & desenvolvimento , Ecossistema , Inglaterra , Fósforo/análise , Poluentes Químicos da Água/análise
5.
Environ Pollut ; 138(3): 443-54, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15993994

RESUMO

Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels.


Assuntos
Carbonato de Cálcio/toxicidade , Mineração , Plantas/efeitos dos fármacos , Poluição Química da Água/efeitos adversos , Ecossistema , Elementos Químicos , Inglaterra , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Água Doce/química , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Chuva , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...