Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(13)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37267990

RESUMO

Objective. Microbeam radiation therapy (MRT) is an alternative emerging radiotherapy treatment modality which has demonstrated effective radioresistant tumour control while sparing surrounding healthy tissue in preclinical trials. This apparent selectivity is achieved through MRT combining ultra-high dose rates with micron-scale spatial fractionation of the delivered x-ray treatment field. Quality assurance dosimetry for MRT must therefore overcome a significant challenge, as detectors require both a high dynamic range and a high spatial resolution to perform accurately.Approach. In this work, a series of radiation hard a-Si:H diodes, with different thicknesses and carrier selective contact configurations, have been characterised for x-ray dosimetry and real-time beam monitoring applications in extremely high flux beamlines utilised for MRT at the Australian Synchrotron.Results. These devices displayed superior radiation hardness under constant high dose-rate irradiations on the order of 6000 Gy s-1, with a variation in response of 10% over a delivered dose range of approximately 600 kGy. Dose linearity of each detector to x-rays with a peak energy of 117 keV is reported, with sensitivities ranging from (2.74 ± 0.02) nC/Gy to (4.96 ± 0.02) nC/Gy. For detectors with 0.8µm thick active a-Si:H layer, their operation in an edge-on orientation allows for the reconstruction of micron-size beam profiles (microbeams). The microbeams, with a nominal full-width-half-max of 50µm and a peak-to-peak separation of 400µm, were reconstructed with extreme accuracy. The full-width-half-max was observed as 55 ± 1µm. Evaluation of the peak-to-valley dose ratio and dose-rate dependence of the devices, as well as an x-ray induced charge (XBIC) map of a single pixel is also reported.Significance. These devices based on novel a-Si:H technology possess a unique combination of accurate dosimetric performance and radiation resistance, making them an ideal candidate for x-ray dosimetry in high dose-rate environments such as FLASH and MRT.


Assuntos
Silício , Síncrotrons , Raios X , Austrália , Radiometria/métodos
2.
ACS Appl Mater Interfaces ; 15(8): 11225-11233, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800377

RESUMO

Tuneable infrared properties, such as transparency and emissivity, are highly desirable for a range of applications, including thermal windows and emissive cooling. Here, we demonstrate the use of carbon nanotube networks spray-deposited onto an ionic liquid-infused membrane to fabricate devices with electrochromic modulation in the mid-infrared spectrum, facilitating control of emissivity and apparent temperature. Such modulation is enabled by intraband transitions in unsorted single-walled carbon nanotube networks, allowing the use of scalable nanotube inks for printed devices. These devices are optimized by varying film thickness and sheet resistance, demonstrating the emissivity modulation (from ∼0.5 to ∼0.2). These devices and the understanding thereof open the door to selection criteria for infrared electrochromic materials based on the relationship between band structure, electrochemistry, and optothermal properties to enable the development of solution-processable large-area coatings for widespread thermal management applications.

3.
Nat Commun ; 13(1): 6872, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369509

RESUMO

Explosive percolation is an experimentally-elusive phenomenon where network connectivity coincides with onset of an additional modification of the system; materials with correlated localisation of percolating particles and emergent conductive paths can realise sharp transitions and high conductivities characteristic of the explosively-grown network. Nanocomposites present a structurally- and chemically-varied playground to realise explosive percolation in practically-applicable systems but this is yet to be exploited by design. Herein, we demonstrate composites of graphene oxide and synthetic polymer latex which form segregated networks, leading to low percolation threshold and localisation of conductive pathways. In situ reduction of the graphene oxide at temperatures of <150 °C drives chemical modification of the polymer matrix to produce species with phenolic groups, which are known crosslinking agents. This leads to conductivities exceeding those of dense-packed networks of reduced graphene oxide, illustrating the potential of explosive percolation by design to realise low-loading composites with dramatically-enhanced electrical transport properties.

4.
ACS Nano ; 16(2): 1963-1973, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107970

RESUMO

Here, we develop a framework for assembly, understanding, and application of functional emulsions stabilized by few-layer pristine two-dimensional (2D) nanosheets. Liquid-exfoliated graphene and MoS2 are demonstrated to stabilize emulsions at ultralow nanosheet volume fractions, approaching the minimum loading achievable with 2D materials. These nanosheet-stabilized emulsions allow controlled droplet deposition free from the coffee ring effect to facilitate single-droplet devices from minute quantities of material or assembly into large-area films with high network conductivity. To broaden the range of compositions and subsequent applications, an understanding of emulsion stability and orientation in terms of surface energy of the three phases is developed. Importantly, this model facilitates determination of the surface energies of the nanosheets themselves and identifies strategies based on surface tension and pH to allow design of emulsion structures. Finally, this approach is used to prepare conductive silicone emulsion composites with a record-low loading level and excellent electromechanical sensitivity. The versatility of these nanosheet-stabilized emulsions illustrates their potential for low-loading composites, thin-film formation and surface energy determination, and the design of functional structures for a range of segregated network applications.

5.
J Mater Chem B ; 10(3): 373-383, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34931630

RESUMO

Three-dimensional tissue scaffolds have utilised nanomaterials to great effect over the last decade. In particular, scaffold design has evolved to consider mechanical structure, morphology, chemistry, electrical properties, and of course biocompatibility - all vital to the performance of the scaffold and how successful they are in developing cell cultures. We have developed an entirely synthetic and tuneable three-dimensional scaffold of reduced graphene oxide (rGO) that shows good biocompatibility, and favourable mechanical properties as well as reasonable electrical conductivity. Importantly, the synthesis is scaleable and suitable for producing scaffolds of any desired geometry and size, and we observe a high level of biocompatibility and cell proliferation for multiple cell lines. In particular, one of the most devastating forms of malignant brain cancer, glioblastoma (GBM), grows especially well on our rGO scaffold in vitro, and without the addition of response-specific growth factors. We have observed that our scaffold elicits spontaneous formation of a high degree of intercellular connections across the GBM culture. This phenomenon is not well documented in vitro and nothing similar has been observed in synthetic scaffolds without the use of response-specific growth factors - which risk obscuring any potential phenotypic behaviour of the cells. The use of scaffolds like ours, which are not subject to the limitations of existing two-dimensional substrate technologies, provide an excellent system for further investigation into the mechanisms behind the rapid proliferation and success of cancers like GBM. These synthetic scaffolds can advance our understanding of these malignancies in the pursuit of improved theranostics against them.


Assuntos
Materiais Biocompatíveis/química , Glioblastoma/metabolismo , Grafite/química , Alicerces Teciduais/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Células Endoteliais da Veia Umbilical Humana , Humanos , Porosidade
6.
Nanoscale ; 14(2): 320-324, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932055

RESUMO

Printed electronics based on liquid-exfoliated nanosheet networks are limited by inter-nanosheet junctions and thick films which hinder field-effect gating. Here, few-layer molybdenum disulfide nanosheets are assembled by Langmuir deposition into thin films, and size selection is shown to lead to a thousandfold conductivity enhancement with potential applicability to all nanosheet networks.

7.
ACS Appl Mater Interfaces ; 13(48): 57703-57712, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806354

RESUMO

There is growing interest in the development of novel materials and devices capable of ionizing radiation detection for medical applications. Organic semiconductors are promising candidates to meet the demands of modern detectors, such as low manufacturing costs, mechanical flexibility, and a response to radiation equivalent to human tissue. However, organic semiconductors have typically been employed in applications that convert low energy photons into high current densities, for example, solar cells and LEDs, and thus existing design rules must be re-explored for ionizing radiation detection where high energy photons are converted into typically much lower current densities. In this work, we report the optoelectronic and X-ray dosimetric response of a tissue equivalent organic photodetector fabricated with solution-based inks prepared from polymer donor poly(3-hexylthiophene) (P3HT) blended with either a non-fullerene acceptor (5Z,5'Z)-5,5'-((7,7'-(4,4,9,9-tetraoctyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(benzo[c][1,2,5]thiadiazole-7,4-diyl))bis(methanylylidene))bis(3-ethyl-2-thioxothiazolidin-4-one) (o-IDTBR) or a fullerene acceptor, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Indirect detection of X-rays was achieved via coupling of organic photodiodes with a plastic scintillator. Both detectors displayed an excellent response linearity with dose, with sensitivities to 6 MV photons of 263.4 ± 0.6 and 114.2 ± 0.7 pC/cGy recorded for P3HT:PCBM and P3HT:o-IDTBR detectors, respectively. Both detectors also exhibited a fast temporal response, able to resolve individual 3.6 µs pulses from the linear accelerator. Energy dependence measurements highlighted that the photodetectors were highly tissue equivalent, though an under-response in devices compared to water by up to a factor of 2.3 was found for photon energies of 30-200 keV due to the response of the plastic scintillator. The P3HT:o-IDTBR device exhibited a higher stability to radiation, showing just an 18.4% reduction in performance when exposed to radiation doses of up to 10 kGy. The reported devices provide a successful demonstration of stable, printable, flexible, and tissue-equivalent radiation detectors with energy dependence similar to other scintillator-based detectors used in radiotherapy.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Humanos , Teste de Materiais , Estrutura Molecular , Radiação Ionizante , Semicondutores , Raios X
8.
ACS Nano ; 15(2): 2520-2531, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33492930

RESUMO

Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10-15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.

9.
Adv Funct Mater ; 30(31): 2002473, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32774202

RESUMO

High quality opal-like photonic crystals containing graphene are fabricated using evaporation-driven self-assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle-dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time-temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution-processable nanomaterial based photonics.

10.
J Mater Chem B ; 8(34): 7733-7739, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32725027

RESUMO

To facilitate printable sensing solutions particles need to be suspended and stabilised in a liquid medium. Hansen parameters were used to identify that alcohol-water blends are ideal for stabilising colloidal copper hydroxide in dispersion. The suspended material can be further separated in various size fractions with a distinct cuboid geometry which was verified using atomic force microscopy. This facilitates the development of Raman spectroscopic metrics for determining particle sizes. This aspect ratio is related to the anisotropic crystal structure of the bulk crystallites. As the size of the nanocuboids decreases electrochemical sensitivity of the material increases due to an increase in specific surface area. Electrochemical glucose sensitivity was investigated using both cyclic voltammetry and chronoamperometry. The sensitivity is noted to saturate with film thickness. The electrochemical response of 253 mA M-1 cm-2 up to 0.1 mM and 120 mA cm-2 up to 0.6 mM allow for calibration of potential devices. These results indicate suitability for use as a glucose sensor and, due to the surfactant-free, low boiling point solvent approach used to exfoliate the nanocuboids, it is an ideal candidate for printable solutions. The ease of processing will also allow this material to be integrated in composite films for improved functionality in future devices.


Assuntos
Cobre/química , Eletroquímica/métodos , Glucose/análise , Hidróxidos/química , Nanoestruturas/química , Eletroquímica/instrumentação , Eletrodos , Limite de Detecção , Solventes/química
11.
J Phys Chem B ; 124(33): 7184-7193, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32706967

RESUMO

The application of nanomaterials in technology is limited by challenges in their processing into macroscopic structures with reliable and scalable methods. Herein, it is demonstrated that using scalable fabrication methods such as liquid-phase exfoliation, it is possible to produce dispersions of a wide variety of layered nanomaterials, including the first demonstration of boron nitride, with controllable and standardized size and thickness scaling. These can be used, as-produced, for Langmuir deposition, to create single layer films with tuneable density. Of particular importance, we show that the difference in edge chemistry of these materials dictates the film formation process, and therefore can be used to provide a generic fabrication methodology that is demonstrated for various layered nanomaterials, including graphene, boron nitride, and transition metal dichalcogenides. We show that this leads to controllable cancer cell growth on graphene substrates with different edge densities but comparable surface coverage, which can be produced on a statistically relevant cell study amount. This opens pathways for the generic fabrication of a range of layered nanomaterial films for various applications toward a commercially viable film fabrication technology.


Assuntos
Grafite , Nanoestruturas , Técnicas de Cultura de Células
12.
ACS Appl Mater Interfaces ; 12(35): 39541-39548, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32697564

RESUMO

Laser-deposited carbon aerogel is a low-density porous network of carbon clusters synthesized using a laser process. A one-step synthesis, involving deposition and annealing, results in the formation of a thin porous conductive film which can be applied as a chemiresistor. This material is sensitive to NO2 compared to ammonia and other volatile organic compounds and is able to detect ultra-low concentrations down to at least 10 parts-per-billion. The sensing mechanism, based on the solubility of NO2 in the water layer adsorbed on the aerogel, increases the usability of the sensor in practically relevant ambient environments. A heating step, achieved in tandem with a microheater, allows the recovery to the baseline, making it operable in real world environments. This, in combination with its low cost and scalable production, makes it promising for Internet-of-Things air quality monitoring.

13.
Med Phys ; 47(8): 3658-3668, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32395821

RESUMO

PURPOSE: The development of novel detectors for dosimetry in advanced radiotherapy modalities requires materials that have a water equivalent response to ionizing radiation such that characterization of radiation beams can be performed without the need for complex calibration procedures and correction factors. Organic semiconductors are potentially an ideal technology in fabricating devices for dosimetry due to tissue equivalence, mechanical flexibility, and relatively cheap manufacturing cost. The response of a commercial organic photodetector (OPD), coupled to a plastic scintillator, to ionizing radiation from a linear accelerator and orthovoltage x-ray tube has been characterized to assess its potential as a dosimeter for radiotherapy. The radiation hardness of the OPD has also been investigated to demonstrate its longevity for such applications. METHODS: Radiation hardness measurements were achieved by observing the response of the OPD to the visible spectrum and 70 keV x rays after pre-exposure to 40 kGy of ionizing radiation. The response of a preirradiated OPD to 6-MV photons from a linear accelerator in reference conditions was compared to a nonirradiated OPD with respect to direct and indirect (RP400 plastic scintillator) detection mechanisms. Dose rate dependence of the OPD was measured by varying the surface-to-source distance between 90 and 300 cm. Energy dependence was characterized from 29.5 to 129 keV with an x-ray tube. The percentage depth dose (PDD) curves were measured from 0.5 to 20 cm and compared to an ionization chamber. RESULTS: The OPD sensitivity to visible light showed substantial degradation of the broad 450 to 600 nm peak from the donor after irradiation to 40 kGy. After irradiation, the spectral shape has a dominant absorbance peak at 370 nm, as the acceptor better withstood radiation damage. Its response to x rays stabilized to 30% after 35 kGy, with a 0.5% difference between 770 Gy increments. The OPD exhibited reproducible detection of ionizing radiation when coupled with a scintillator. Indirect detection showed a linear response from 25 to 500 cGy and constant response to dose rates from 0.31 Gy/pulse to 3.4 × 10-4  Gy/pulse. However, without the scintillator, response increased by 100% at low dose rates. Energy independence between 100 keV and 1.2 MeV advocates their use as a dosimeter without beam correction factors. A dependence on the scintillator thickness used during a comparison of the PDD to the ionizing chamber was identified. A 1-mm-thick scintillator coupled with the OPD demonstrated the best agreement of ± 3%. CONCLUSIONS: The response of OPDs to ionizing radiation has been characterized, showing promising use as a dosimeter when coupled with a plastic scintillator. The mechanisms of charge transport and trapping within organic materials varies for visible and ionizing radiation, due to differing properties for direct and indirect detection mechanisms and observing a substantial decrease in sensitivity to the visible spectrum after 40 kGy. This study proved that OPDs produce a stable response to 6-MV photons, and with a deeper understanding of the charge transport mechanisms due to exposure to ionizing radiation, they are promising candidates as the first flexible, water equivalent, real-time dosimeter.


Assuntos
Dosímetros de Radiação , Radiometria , Aceleradores de Partículas , Fótons , Semicondutores
14.
Nanoscale ; 11(33): 15550-15560, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31393511

RESUMO

Liquid-phase exfoliation (LPE) has been shown to be capable of producing large quantities of high-quality dispersions suitable for processing into subsequent applications. LPE typically requires surfactants for aqueous dispersions or organic solvents with high boiling point. However, they have major drawbacks such as toxicity, aggregation during solvent evaporation or the presence of residues. Here, dispersions of molybdenum disulfide in acetone are prepared and show much higher concentration and stability than predicted by Hansen parameter analysis. Aiming to understand these enhanced properties, the nanosheets were characterised using UV-visible spectroscopy, zeta potential measurements, atomic force microscopy, Raman spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and scanning transmission microscopy combined with spatially-resolved electron energy loss spectroscopy. Also, the performance of the MoS2 nanosheets exfoliated in acetone was compared to that of those exfoliated in isopropanol as a catalyst for the hydrogen evolution reaction. The conclusion from the chemical characterisation was that MoS2 nanosheets exfoliated in acetone have an oxygen edge functionalisation, in the form of molybdenum oxides, changing its interaction with solvents and explaining the observed high-quality and stability of the resulting dispersion in a low boiling point solvent. Exfoliation in acetone could potentially be applied as a pretreatment to modify the solubility of MoS2 by edge functionalisation.

15.
ACS Appl Mater Interfaces ; 11(34): 31191-31199, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31374170

RESUMO

Nanohybrid materials based on nanoparticles of the intrinsically microporous polymer PIM-1 and graphene oxide (GO) are prepared from aqueous dispersions with a reprecipitation method, resulting in the surface of the GO sheets being decorated with nanoparticles of PIM-1. The significant blueshift in fluorescence signals for the GO/PIM-1 nanohybrids indicates modification of the optoelectronic properties of the PIM-1 in the presence of the GO due to their strong interactions. The stiffening in the Raman G peak of GO (by nearly 6 cm-1) further indicates p-doping of the GO in the presence of PIM. Kelvin probe force microscopy (KPFM) and electrochemical reduction measurements of the nanohybrids provide direct evidence for charge transfer between the PIM-1 nanoparticles and the GO nanosheets. These observations will be of importance for future applications of GO-PIM-1 nanohybrids as substrates and promoters in catalysis and sensing.

16.
ACS Appl Mater Interfaces ; 10(25): 21740-21745, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29856209

RESUMO

Recent advances in the large-scale production of graphene have led to the availability of solution-processable platelets on the commercial scale. Langmuir-Schaefer deposition is a scalable process for forming a percolating film of graphene platelets, which can be used for electronic gas sensing. Here, we demonstrate the use of this deposition method to produce functional gas sensors, using a chemiresistor structure from commercially available graphene dispersions. The sensitivity of the devices and the repeatability of the electrical response upon gas exposure have been characterized. Raman spectroscopy and Kelvin probe force microscopy show doping of the basal plane using ammonia (n-dopant) and acetone (p-dopant). The resistive signal is increased upon exposure to both gases, showing that sensing originates from the change in the contact resistance between nanosheets. We demonstrate that Arrhenius fitting of desorption response potentially allows measurements of desorption process activation energies for gas molecules adsorbed onto the graphene nanosheets.

17.
Nanoscale ; 10(4): 1582-1586, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29313550

RESUMO

Pickering emulsions stabilised with nanomaterials provide routes to a range of functional macroscopic assemblies. We demonstrate the formation and properties of water-in-oil emulsions prepared through liquid-phase exfoliation of graphene. Due to the functional nature of the stabiliser, the emulsions exhibit conductivity due to inter-particle tunnelling. We demonstrate a strain sensing application with a large gauge factor of ∼40; the highest reported in a liquid. Our methodology can be applied to other two-dimensional layered materials opening up applications such as energy storage materials, and flexible and printable electronics.

18.
ACS Omega ; 3(11): 15134-15139, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458178

RESUMO

Carbon nanofoam (CNF) is a highly porous, amorphous carbon nanomaterial that can be produced through the interaction of a high-fluence laser and a carbon-based target material. The morphology and electrical properties of CNF make it an ideal candidate for supercapacitor applications. In this paper, we prepare and characterize CNF supercapacitor electrodes through two different processes, namely, a direct process and a water-transfer process. We elucidate the influence of the production process on the microstructural properties of the CNF, as well as the final electrochemical performance. We show that a change in morphology due to capillary forces doubles the specific capacitance of the wet-transferred CNF electrodes.

19.
Langmuir ; 33(51): 14766-14771, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29199834

RESUMO

To prepare high-quality Langmuir films of 2D materials it is important to select a solvent optimized for both exfoliation and spreading at the air-water interface. Whereas it is generally accepted that exfoliation and stabilization of 2D materials is well-described using the Hansen solubility parameter theory, a complementary description of solvent spreading behavior is lacking. To this end we develop an understanding of solvent spreading using a Hansen solubility parameter framework. Our model accurately predicts the behavior of both water-immiscible and water-miscible solvents in Langmuir film formation experiments. We demonstrate that spreading behavior can be modified by controlling the surface pressure of the subphase using an amphiphilic species and accordingly utilize this approach to determine the maximum spreading pressure for a selection of solvents. Ultimately, by building on this understanding we open up additional routes to optimize the preparation of Langmuir films of 2D materials and other nanoparticles.

20.
Sci Rep ; 7(1): 16706, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196735

RESUMO

N-methyl-2-pyrrolidone (NMP) has been shown to be the most effective solvent for liquid phase exfoliation and dispersion of a range of 2D materials including graphene, molybdenum disulphide (MoS2) and black phosphorus. However, NMP is also known to be susceptible to sonochemical degradation during exfoliation. We report that this degradation gives rise to strong visible photoluminescence of NMP. Sonochemical modification is shown to influence exfoliation of layered materials in NMP and the optical absorbance of the solvent in the dispersion. The emerging optical properties of the degraded solvent present challenges for spectroscopy of nanomaterial dispersions; most notably the possibility of observing solvent photoluminescence in the spectra of 2D materials such as MoS2, highlighting the need for stable solvents and exfoliation processes to minimise the influence of solvent degradation on the properties of liquid-exfoliated 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...