Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 127(1): 660-671, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36660098

RESUMO

First principles modeling of anatase TiO2 surfaces and their interfacial contacts shows that defect-induced trap states within the band gap arise from intrinsic structural distortions, and these can be corrected by modification with Zr(IV) ions. Experimental testing of these predictions has been undertaken using anatase nanocrystals modified with a range of Zr precursors and characterized using structural and spectroscopic methods. Continuous-wave electron paramagnetic resonance (EPR) spectroscopy revealed that under illumination, nanoparticle-nanoparticle interfacial hole trap states dominate, which are significantly reduced after optimizing the Zr doping. Fabrication of nanoporous films of these materials and charge injection using electrochemical methods shows that Zr doping also leads to improved electron conductivity and mobility in these nanocrystalline systems. The simple methodology described here to reduce the concentration of interfacial defects may have wider application to improving the efficiency of systems incorporating metal oxide powders and films including photocatalysts, photovoltaics, fuel cells, and related energy applications.

2.
Nat Mater ; 21(8): 864-868, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35618828

RESUMO

Photoelectrochemical (PEC) devices have been developed for direct solar fuel production but the limited stability of submerged light absorbers can hamper their commercial prospects.1,2 Here, we demonstrate photocathodes with an operational H2 evolution activity over weeks, by integrating a BiOI light absorber into a robust, oxide-based architecture with a graphite paste conductive encapsulant. In this case, the activity towards proton and CO2 reduction is mainly limited by catalyst degradation. We also introduce multiple-pixel devices as an innovative design principle for PEC systems, displaying superior photocurrents, onset biases and stability over corresponding conventional single-pixel devices. Accordingly, PEC tandem devices comprising multiple-pixel BiOI photocathodes and BiVO4 photoanodes can sustain bias-free water splitting for 240 h, while devices with a Cu92In8 alloy catalyst demonstrate unassisted syngas production from CO2.

3.
Materials (Basel) ; 15(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208096

RESUMO

The oxidation of solution-synthesized iron (Fe) and iron carbide (Fe2C) nanoparticles was studied in an environmental scanning transmission electron microscope (ESTEM) at elevated temperatures under oxygen gas. The nanoparticles studied had a native oxide shell present, that formed after synthesis, an ~3 nm iron oxide (FexOy) shell for the Fe nanoparticles and ~2 nm for the Fe2C nanoparticles, with small void areas seen in several places between the core and shell for the Fe and an ~0.8 nm space between the core and shell for the Fe2C. The iron nanoparticles oxidized asymmetrically, with voids on the borders between the Fe core and FexOy shell increasing in size until the void coalesced, and finally the Fe core disappeared. In comparison, the oxidation of the Fe2C progressed symmetrically, with the core shrinking in the center and the outer oxide shell growing until the iron carbide had fully disappeared. Small bridges of iron oxide formed during oxidation, indicating that the Fe transitioned to the oxide shell surface across the channels, while leaving the carbon behind in the hollow core. The carbon in the carbide is hypothesized to suppress the formation of larger crystallites of iron oxide during oxidation, and alter the diffusion rates of the Fe and O during the reaction, which explains the lower sensitivity to oxidation of the Fe2C nanoparticles.

4.
Nanoscale ; 14(3): 910-918, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34988567

RESUMO

Carbon dots (CDs) are an emerging class of photoluminescent material. Their unique optical properties arise from the discrete energy levels in their electronic states, which directly relate to their crystalline and chemical structure. It is expected that when CDs go through structural changes via chemical reduction or thermal annealing, their energy levels will be altered, inducing unique optoelectronic properties such as solid-state photoluminescence (PL). However, the detailed structural evolution and how the optoelectronic characteristics of CDs are affected remain unclear. Therefore, it is of fundamental interest to understand how the structure of CDs prepared by hydrothermal carbonisation (HTC) rearranges from a highly functionalised disordered structure into a more ordered graphitic structure. In this paper, detailed structural characterisation and in situ TEM were conducted to reveal the structural evolution of CDs during the carbonisation process, which have demonstrated a growth in aromatic domains and reduction in oxidation sites. These structural features are correlated with their near-infrared (NIR) solid-state PL properties, which may find a lot of practical applications such as temperature sensing, solid-state display lighting and anti-counterfeit security inks.

5.
ACS Appl Mater Interfaces ; 12(47): 53446-53453, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33191725

RESUMO

In2O3 is a wide bandgap oxide semiconductor, which has the potential to be used as an active material for transparent flexible electronics and UV photodetectors. However, the high concentration of unintentional background electrons existing in In2O3 makes it hard to be modulated by the electric field or form p-n heterojunctions with a sufficient band-bending width at the interface. In this work, we report the reduction of the background electrons in In2O3 by Mg doping (Mg-In2O3) and thereby improve the device performance of p-n diodes based on the NiO/Mg-In2O3 heterojunction. In particular, Mg doping compensates the free electrons in In2O3 and reduces the electron concentration from 1.7 × 1019 cm-3 without doping to 1.8 × 1017 cm-3 with 5% Mg doping. Transparent p-n heterojunction diodes were fabricated based on p-type NiO and n-type Mg-In2O3. The device performance was considerably enhanced by Mg doping with a high rectification ratio of 3 × 104 and a remarkable high breakdown voltage of >20 V. High-resolution X-ray photoelectron spectroscopy was used to investigate the interfacial electronic structure between NiO and Mg-In2O3, revealing a type II band alignment with a valence band offset of 1.35 eV and a conduction band offset of 2.15 eV. A large built-in potential of 0.98 eV was found for the undoped In2O3 but decreased to 0.51 eV for 5% Mg doping of In2O3. The NiO/Mg-In2O3 diodes with an improved rectification ratio and wider depletion region provide the possibility of achieving photodetectors with rapid photoresponse.

6.
Chemistry ; 26(30): 6862-6868, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017277

RESUMO

Anchoring a homogeneous catalyst onto a heterogeneous support facilitates separation of the product from the catalyst, and catalyst-substrate interactions can also modify reactivity. Herein we describe the synthesis of composite materials comprising carbon nitride (g-C3 N4 ) as the heterogeneous support and the well-established homogeneous catalyst moiety [Cp*IrCl]+ (where Cp*=η5 -C5 Me5 ), commonly used for catalytic hydrogenation. Coordination of [Cp*IrCl]+ to g-C3 N4 occurs directly at exposed edge sites with a κ2 N,N' binding motif, leading to a primary inner coordination sphere analogous to known homogeneous complexes of the general class [Cp*IrCl(NN-κ2 N,N')]+ (where N,N'=a bidentate nitrogen ligand). Hydrogenation of unsaturated substrates using the composite catalyst is selective for terminal alkenes, which is attributed to the restricted steric environment of the outer coordination sphere at the edge-sites of g-C3 N4 .

7.
Chem Commun (Camb) ; 55(52): 7450-7453, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31183485

RESUMO

IR spectroscopy and model structural studies show binding of ReCl(CO)3-fragments to carbon nitride (g-C3N4) occurs viaκ2 N,N' bidentate coordination.

8.
Nanotechnology ; 30(17): 175701, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30641503

RESUMO

Atomic-scale relaxations of platinum nanoparticles (Pt NPs) for fuel-cell catalysts are evaluated by spherical-aberration corrected environmental transmission electron microscopy (ETEM) under reference high-vacuum and N2 atmospheres, and then under reactive H2, CO and O2 atmospheres, combined with ex situ durability test using an electrochemical half-cell. In high-vacuum, increasing roughness due to continuous relaxation of surface-adsorbed Pt atoms is quantified in real-space. Under H2 and N2 atmospheres at a critical partial pressure of 1 × 10-2 Pa the stability of the surface facets is for the first time found to be improved. The adsorption behaviour of CO molecules is investigated using experimentally measured Pt-Pt bond lengths on the topmost surface layer of Pt NPs. The deactivation of Pt NPs in the anode environment of a proton-exchange-membrane fuel-cell is demonstrated at the atomic-scale in the ETEM, and the transformation of NPs into disordered nanoclusters is systematically quantified using the partial size distribution of Pt atomic clusters under controlled heating experiments at 423, 573 and 723 K.

9.
Science ; 360(6388)2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29724924

RESUMO

The components of bone assemble hierarchically to provide stiffness and toughness. However, the organization and relationship between bone's principal components-mineral and collagen-has not been clearly elucidated. Using three-dimensional electron tomography imaging and high-resolution two-dimensional electron microscopy, we demonstrate that bone mineral is hierarchically assembled beginning at the nanoscale: Needle-shaped mineral units merge laterally to form platelets, and these are further organized into stacks of roughly parallel platelets. These stacks coalesce into aggregates that exceed the lateral dimensions of the collagen fibrils and span adjacent fibrils as continuous, cross-fibrillar mineralization. On the basis of these observations, we present a structural model of hierarchy and continuity for the mineral phase, which contributes to the structural integrity of bone.


Assuntos
Substitutos Ósseos , Osso e Ossos/química , Osso e Ossos/ultraestrutura , Nanoestruturas , Densidade Óssea , Calcificação Fisiológica , Tomografia com Microscopia Eletrônica , Humanos , Microscopia Eletrônica de Transmissão
10.
Sci Rep ; 7: 45997, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393876

RESUMO

The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12-14 nm.

11.
Sci Rep ; 6: 29724, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411576

RESUMO

Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy combined with ab initio electronic calculations are used to determine the structure and properties of the Fe3O4(111)/SrTiO3(111) polar interface. The interfacial structure and chemical composition are shown to be atomically sharp and of an octahedral Fe/SrO3 nature. Band alignment across the interface pins the Fermi level in the vicinity of the conduction band of SrTiO3. Density functional theory calculations demonstrate very high spin-polarization of Fe3O4 in the interface vicinity which suggests that this system may be an excellent candidate for spintronic applications.

12.
Sci Rep ; 6: 20943, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876049

RESUMO

We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

13.
Nanotechnology ; 25(42): 425702, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25267289

RESUMO

The gas injection line of the latest spherical aberration-corrected environmental transmission electron microscope has been modified for achieving real-time/atomic-scale observations in moisturised gas atmospheres for the first time. The newly developed Wet-TEM system is applied to platinum carbon electrode catalysts to investigate the effect of water molecules on the platinum/carbon interface during deactivation processes such as sintering and corrosion. Dynamic in situ movies obtained in dry and 24% moisturised nitrogen environments visualize the rapid rotation, migration and agglomeration of platinum nanoparticles due to the physical adsorption of water and the hydroxylation of the carbon surface. The origin of the long-interconnected aggregation of platinum nanoparticles was discovered to be a major deactivation process in addition to conventional carbon corrosion.

14.
Nat Mater ; 13(1): 26-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24185757

RESUMO

Geometry and confinement effects at the nanoscale can result in substantial modifications to a material's properties with significant consequences in terms of chemical reactivity, biocompatibility and toxicity. Although benefiting applications across a diverse array of environmental and technological settings, the long-term effects of these changes, for example in the reaction of metallic nanoparticles under atmospheric conditions, are not well understood. Here, we use the unprecedented resolution attainable with aberration-corrected scanning transmission electron microscopy to study the oxidation of cuboid Fe nanoparticles. Performing strain analysis at the atomic level, we reveal that strain gradients induced in the confined oxide shell by the nanoparticle geometry enhance the transport of diffusing species, ultimately driving oxide domain formation and the shape evolution of the particle. We conjecture that such a strain-gradient-enhanced mass transport mechanism may prove essential for understanding the reaction of nanoparticles with gases in general, and for providing deeper insight into ionic conductivity in strained nanostructures.


Assuntos
Compostos Férricos/química , Ferro/química , Nanopartículas/química , Transporte de Íons , Modelos Moleculares , Conformação Molecular , Oxirredução
15.
Materials (Basel) ; 7(3): 1473-1482, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-28788526

RESUMO

In this work we present a theoretical study of the effect of disorder on spin polarisation at the Fermi level, and the disorder formation energies for Co2FexMn1-xSi (CFMS) alloys. The electronic calculations are based on density functional theory with a Hubbard U term. Chemical disorders studied consist of swapping Co with Fe/Mn and Co with Si; in all cases we found these are detrimental for spin polarisation, i.e., the spin polarisation not only decreases in magnitude, but also can change sign depending on the particular disorder. Formation energy calculation shows that Co-Si disorder has higher energies of formation in CFMS compared to Co2MnSi and Co2FeSi, with maximum values occurring for x in the range 0.5-0.75. Cross-sectional structural studies of reference Co2MnSi, Co2Fe0.5Mn0.5Si, and Co2FeSi by Z-contrast scanning transmission electron microscopy are in qualitative agreement with total energy calculations of the disordered structures.

16.
Nano Lett ; 13(7): 3334-9, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23746148

RESUMO

We have used X-ray magnetic circular dichroism and magnetometry to study isolated Fe@Cr core-shell nanoparticles with an Fe core diameter of 2.7 nm (850 atoms) and a Cr shell thickness varying between 1 and 2 monolayers. The addition of Cr shells significantly reduces the spin moment but does not change the orbital moment. At least two Cr atomic layers are required to stabilize a ferromagnetic/antiferromagnetic interface and generate the associated exchange bias and increase in coercivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...