Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(46): 18955-18969, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37927081

RESUMO

The Zr-monosubstituted Keggin-type dimeric phosphotungstate (Bu4N)8[{PW11O39Zr(µ-OH)(H2O)}2] (1) efficiently catalyzes epoxidation of C═C bonds in various kinds of alkenes, including terminal ones, with aqueous H2O2 as oxidant. Less sterically hindered double bonds are preferably epoxidized despite their lower nucleophilicity. Basic additives (Bu4NOH) in the amount of 1 equiv per dimer 1 suppress H2O2 unproductive decomposition, increase substrate conversion, improve yield of heterolytic oxidation products and oxidant utilization efficiency, and also affect regioselectivity of epoxidation, enhancing oxygen transfer to sterically hindered electron-rich C═C bonds. Acid additives produce a reverse effect on the substrate conversion and H2O2 efficiency. The reaction mechanism was explored using a range of test substrates, kinetic, and spectroscopic tools. The opposite effects of acid and base additives on alkene epoxidation and H2O2 degradation have been rationalized in terms of their impact on hydrolysis of 1 to form monomeric species, [PW11O39Zr(OH)(H2O)x]4- (1-M, x = 1 or 2), which favors H2O2 homolytic decomposition. The interaction of 1 with H2O2 has been investigated by HR-ESI-MS, ATR-FT-IR, and 31P NMR spectroscopic techniques. The combination of spectroscopic studies and kinetic modeling implicated the existence of two types of dimeric peroxo complexes, [Zr2(µ-η2:η2-O2){PW11O39}2(H2O)x]]8- and [{Zr(µ-η2-O2)}2(PW11O39)2(H2O)y]10-, along with monomeric Zr (hydro)peroxo species that begin to dominate at a high excess of H2O2. Both dimeric µ-η2-peroxo intermediates are inert toward alkenes under stoichiometric conditions. V-shape Hammett plots obtained for epoxidation of p-substituted styrenes suggested a biphilic nature of the active oxidizing species, which are monomeric Zr-hydroperoxo and peroxo species. Small basic additives increase the electrophilicity of the catalyst and decrease its nucleophilicity. HR-ESI-MS has identified a dimeric, most likely, bridging hydroperoxo species [{PW11O39Zr}2(µ-O)(µ-OOH)]9-, which may account for the improved epoxidation selectivity and regioselectivity toward sterically hindered C═C bonds.

2.
ACS Catal ; 13(15): 10324-10339, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37560188

RESUMO

The decomposition of hydrogen peroxide (H2O2) is the main undesired side reaction in catalytic oxidation processes of industrial interest that make use of H2O2 as a terminal oxidant, such as the epoxidation of alkenes. However, the mechanism responsible for this reaction is still poorly understood, thus hindering the development of design rules to maximize the efficiency of catalytic oxidations in terms of product selectivity and oxidant utilization efficiency. Here, we thoroughly investigated the H2O2 decomposition mechanism using a Zr-monosubstituted dimeric Lindqvist tungstate, (Bu4N)6[{W5O18Zr(µ-OH)}2] ({ZrW5}2), which revealed high activity for this reaction in acetonitrile. The mechanism of the {ZrW5}2-catalyzed H2O2 degradation in the absence of an organic substrate was investigated using kinetic, spectroscopic, and computational tools. The reaction is first order in the Zr catalyst and shows saturation behavior with increasing H2O2 concentration. The apparent activation energy is 11.5 kcal·mol-1, which is significantly lower than the values previously found for Ti- and Nb-substituted Lindqvist tungstates (14.6 and 16.7 kcal·mol-1, respectively). EPR spectroscopic studies indicated the formation of superoxide radicals, while EPR with a specific singlet oxygen trap, 2,2,6,6-tetramethylpiperidone (4-oxo-TEMP), revealed the generation of 1O2. The interaction of test substrates, α-terpinene and tetramethylethylene, with H2O2 in the presence of {ZrW5}2 corroborated the formation of products typical of the oxidation processes that engage 1O2 (endoperoxide ascaridole and 2,3-dimethyl-3-butene-2-hydroperoxide, respectively). While radical scavengers tBuOH and p-benzoquinone produced no effect on the peroxide product yield, the addition of 4-oxo-TEMP significantly reduced it. After optimization of the reaction conditions, a 90% yield of ascaridole was attained. DFT calculations provided an atomistic description of the H2O2 decomposition mechanism by Zr-substituted Lindqvist tungstate catalysts. Calculations showed that the reaction proceeds through a Zr-trioxidane [Zr-η2-OO(OH)] key intermediate, whose formation is the rate-determining step. The Zr-substituted POM activates heterolytically a first H2O2 molecule to generate a Zr-peroxo species, which attacks nucleophilically to a second H2O2, causing its heterolytic O-O cleavage to yield the Zr-trioxidane complex. In agreement with spectroscopic and kinetic studies, the lowest-energy pathway involves dimeric Zr species and an inner-sphere mechanism. Still, we also found monomeric inner- and outer-sphere pathways that are close in energy and could coexist with the dimeric one. The highly reactive Zr-trioxidane intermediate can evolve heterolytically to release singlet oxygen and also decompose homolytically, producing superoxide as the predominant radical species. For H2O2 decomposition by Ti- and Nb-substituted POMs, we also propose the formation of the TM-trioxidane key intermediate, finding good agreement with the observed trends in apparent activation energies.

3.
Phys Chem Chem Phys ; 25(20): 13846-13853, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161549

RESUMO

Probes sensitive to mechanical stress are in demand for the analysis of pressure distribution in materials, and the design of pressure sensors based on metal-organic frameworks (MOFs) is highly promising due to their structural tunability. We report a new pressure-sensing material, which is based on the UiO-66 framework with trace amounts of a spin probe (0.03 wt%) encapsulated in cavities. To obtain this material, we developed an approach for encapsulation of stable nitroxide radical TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) into the micropores of UiO-66 during its solvothermal synthesis. Pressure read-out using electron paramagnetic resonance (EPR) spectroscopy allows monitoring the degradation of the defected MOF structure upon pressurization, where full collapse of pores occurs at as low a pressure as 0.13 GPa. The developed methodology can be used in and ex situ and provides sensitive tools for non-destructive mapping of pressure effects in various materials.

4.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431620

RESUMO

In this paper, we report the experimental results obtained in slag waste processing by direct current arc discharge initiated in ambient air. The method does not employ vacuum and gas equipment, therefore increasing the energy efficiency of processing. Plasma processing of coal slag was performed at different arc exposure times: 5, 10, 15, 20, and 25 s. The obtained materials contained a significant amount of graphite, which was removed through combustion. The micropowder based on silicon carbide and aluminum nitride was obtained and then sintered by spark plasma. The bulk ceramic samples based on silicon carbide with the hardness of ~10.4 GPa were finally fabricated.

5.
J Air Waste Manag Assoc ; 72(2): 161-175, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34846272

RESUMO

The two-stage technology of porous carbonaceous material obtained via pyrolysis in inert medium with subsequent activation by steam is well known. While steam could be a suitable substance for pyrolysis as well, single-staged technology for waste tire recycling is yet to be developed. A comparative analysis of the characteristics of the carbonaceous materials obtained by the single-staged steam pyrolysis of waste tires was carried out, which could provide a theoretical background for the development of such technology. The steam pyrolysis was performed in a tubular reactor in an overheated steam medium (500°C with 5 kg/h mass flow rate). The technical characteristics of the obtained samples were evaluated in the context of their potential for further application as absorbent and raw material for rubber production according to Chemical Abstracts Service No. 1333-86-4. The composition and physico-chemical properties of the obtained samples were studied using BET and thermogravimetric analysis, atomic emission, transmission and scanning electron microscopies, Raman, X-ray diffraction, and photoelectron spectroscopies. The results revealed that the structure and properties of all obtained carbonaceous material samples were similar. The samples consisted of amorphous carbon (with a disordered graphite lattice) and contained a significant amount of metal oxides. According to experimental data, zinc was present in the form of ZnO with a binding energy of 1022.4 eV, while sulfur was observed in the form of sulfide and oxysulfide with binding energies of 161.8 and 163.2 eV, respectively. According to electron microscopy, the morphology of samples was represented by a set of spherical agglomerates comprising nanosized particles. According to the BET analysis of the samples, the specific surface area varied in the range between 52.0 and 66.0 m2/g and the pore volume values were within a range of 0.53-0.87 cm3/g, while the average pore size varied from 412 to 527 Å.Implications: Our paper presents original research in the field of characterization of solid material obtained by single-staged steam gasification of waste tires, which were produced and exploited in conditions of Russia. Modern technology allows thermal utilization of waste tires by obtaining powders of carbonaceous material, which could be used as fuel, adsorbent, etc., but this process usually consists of two stages - pyrolysis in inert medium and activation in steam or carbon dioxide. One of the most promising directions of technological development is simplifying this process into single step, ensuring that the obtained material could be used as carbon black or adsorbent for gas steam cleansing. No data on suitability of carbonaceous material obtained by single-step steam pyrolysis of all-season waste tires to be adsorbent and/or carbon black is present in the literature. In order to evaluate the suitability of the obtained material to be adsorbent, the high specific surface area should be determined, while CAS technical standards specify many chemical and physical properties of industrial carbon black.The aim of the current article is to study the properties of carbonaceous material obtained during single-staged steam gasification of four different all-season tires (due to their widespread application worldwide) and evaluate its fitness as industrial-scale carbon black or adsorbent. The additional problem addressed was the evaluation of the variation in characteristics of carbonaceous material obtained due to different origins of tires. Experiments were conducted in a tubular lab reactor in order to simplify the experimental procedure while ensuring the applicability of the obtained results to practical conditions.The obtained results could be used for the development of the technology for closed-cycle tire processing (because black carbon is used for tire production) and adsorbent production. The characteristics of the materials obtained allow us to choose optimal parameters for such treatment and develop special policies and programs, which will integrate and regulate waste tire utilization via steam gasification.


Assuntos
Pirólise , Vapor , Reciclagem , Borracha , Fuligem
6.
ACS Omega ; 6(30): 19731-19739, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368560

RESUMO

The ignition and combustion of anthracite modified by the addition of pyrolysis oil obtained during thermal processing of waste car tires (WCTs) had been studied. The mass fraction of WCT pyrolysis oil was varied in the range from 5 to 30 wt %. The additive was applied by the drop impregnation method. Ignition and combustion of obtained samples were carried out in a combustion chamber at temperatures of the heating medium T g = 600-800 °C. The gas-phase combustion products were analyzed using an in-line gas analyzer. The application of WCT pyrolysis oil as a combustion modifier contributed to an increase in the reactivity of anthracite, which was expressed in a decrease in the minimum ignition temperature (by 23-104 °C) and a reduction in the ignition delay time. The high-speed video recording indicated that the combustion of both initial and modified with 5 wt % pyrolysis oil anthracite samples was realized in oxidation mode. For samples with more than 10 wt % pyrolysis oil additive, the formation of a visible flame was observed near the sample surface. With an increase in the mass fraction of the additive, the rate of combustion front propagation was increased. The application of WCT pyrolysis oil as a combustion modifier also contributed to the reduction or even the almost complete elimination of unburnt carbon content in the ash residue formed after anthracite combustion.

7.
Chemistry ; 27(23): 6985-6992, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33559238

RESUMO

The catalytic performance of Zr-abtc and MIP-200 metal-organic frameworks consisting of 8-connected Zr6 clusters and tetratopic linkers was investigated in H2 O2 -based selective oxidations and compared with that of 12-coordinated UiO-66 and UiO-67. Zr-abtc demonstrated advantages in both substrate conversion and product selectivity for epoxidation of electron-deficient C=C bonds in α,ß-unsaturated ketones. The significant predominance of 1,2-epoxide in carvone epoxidation, coupled with high sulfone selectivity in thioether oxidation, points to a nucleophilic oxidation mechanism over Zr-abtc. The superior catalytic performance in the epoxidation of unsaturated ketones correlates with a larger amount of weak basic sites in Zr-abtc. Electrophilic activation of H2 O2 can also be realized, as evidenced by the high activity of Zr-abtc in epoxidation of the electron-rich C=C bond in caryophyllene. XRD and FTIR studies confirmed the retention of the Zr-abtc structure after the catalysis. The low activity of MIP-200 in H2 O2 -based oxidations is most likely related to its specific hydrophilicity, which disfavors adsorption of organic substrates and H2 O2 .

8.
Inorg Chem ; 59(15): 10634-10649, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32686426

RESUMO

Zr-based metal-organic frameworks (Zr-MOF) UiO-66 and UiO-67 catalyze thioether oxidation in nonprotic solvents with unprecedentedly high selectivity toward corresponding sulfones (96-99% at ca. 50% sulfide conversion with only 1 equiv of H2O2). The reaction mechanism has been investigated using test substrates, kinetic, adsorption, isotopic (18O) labeling, and spectroscopic tools. The following facts point out a nucleophilic character of the peroxo species responsible for the superior formation of sulfones: (1) nucleophilic parameter XNu = 0.92 in the oxidation of thianthrene 5-oxide and its decrease upon addition of acid; (2) sulfone to sulfoxide ratio of 24 in the competitive oxidation of methyl phenyl sulfoxide and p-Br-methyl phenyl sulfide; (3) significantly lower initial rates of methyl phenyl sulfide oxidation relative to methyl phenyl sulfoxide (kS/kSO = 0.05); and (4) positive slope ρ = +0.42 of the Hammett plot for competitive oxidation of p-substituted aryl methyl sulfoxides. Nucleophilic activation of H2O2 on Zr-MOF is also manifested by their capability of catalyzing epoxidation of electron-deficient C═C bonds in α,ß-unsaturated ketones accompanied by oxidation of acetonitrile solvent. Kinetic modeling on methyl phenyl sulfoxide oxidation coupled with adsorption studies supports a mechanism that involves the interaction of H2O2 with Zr sites with the formation of a nucleophilic oxidizing species and release of water followed by oxygen atom transfer from the nucleophilic oxidant to sulfoxide that competes with water for Zr sites. The nucleophilic peroxo species coexists with an electrophilic one, ZrOOH, capable of oxygen atom transfer to nucleophilic sulfides. The predominance of nucleophilic activation of H2O2 over electrophilic one is, most likely, ensured by the presence of weak basic sites in Zr-MOFs identified by FTIR spectroscopy of adsorbed CDCl3 and quantified by adsorption of isobutyric acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...