Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555625

RESUMO

The spread of tumor cells throughout the body by traveling through the bloodstream is a critical step in metastasis, which continues to be the main cause of cancer-related death. The detection and analysis of circulating tumor cells (CTCs) is important for understanding the biology of metastasis and the development of antimetastatic therapy. However, the isolation of CTCs is challenging due to their high heterogeneity and low representation in the bloodstream. Different isolation methods have been suggested, but most of them lead to CTC damage. However, viable CTCs are an effective source for developing preclinical models to perform drug screening and model the metastatic cascade. In this review, we summarize the available literature on methods for isolating viable CTCs based on different properties of cells. Particular attention is paid to the importance of in vitro and in vivo models obtained from CTCs. Finally, we emphasize the current limitations in CTC isolation and suggest potential solutions to overcome them.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Tecnologia , Biomarcadores Tumorais , Metástase Neoplásica , Separação Celular/métodos
2.
Nanomedicine ; 32: 102317, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33096245

RESUMO

Acidification of the extracellular matrix, an intrinsic characteristic of many solid tumors, is widely exploited for physiologically triggered delivery of contrast agents, drugs, and nanoparticles to tumor. However, pH of tumor microenvironment shows intra- and inter-tumor variation. Herein, we investigate the impact of this variation on pH-triggered delivery of magnetic nanoparticles (MNPs) modified with pH-(low)-insertion peptide (pHLIP). Fluorescent flow cytometry, laser confocal scanning microscopy and transmission electron microscopy data proved that pHLIP-conjugated MNPs interacted with 4T1 cells in two-dimensional culture and in spheroids more effectively at pH 6.4 than at pH 7.2, and entered the cell via clathrin-independent endocytosis. The accumulation efficiency of pHLIP-conjugated MNPs in 4T1 tumors after their intravenous injection, monitored in vivo by magnetic resonance imaging, showed variation. Analysis of the tumor pH profiles recorded with implementation of original nanoprobe pH sensor, revealed obvious correlation between pH measured in the tumor with the amount of accumulated MNPs.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Proteínas de Membrana/farmacologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Feminino , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Polietilenoglicóis/química , Esferoides Celulares/efeitos dos fármacos
3.
ACS Biomater Sci Eng ; 6(7): 3967-3974, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463309

RESUMO

Direct current (DC) reactive magnetron sputtering is as an efficient method for enhancing the biocompatibility of poly(ε-caprolactone) (PCL) scaffolds. However, the PCL chemical bonding state, the composition of the deposited coating, and their interaction with immune cells remain unknown. Herein, we demonstrated that the DC reactive magnetron sputtering of the titanium target in a nitrogen atmosphere leads to the formation of nitrogen-containing moieties and the titanium dioxide coating on the scaffold surface. We have provided the possible mechanism of PCL fragmentation and coating formation supported by XPS results and DFT calculations. Our preliminary biological studies suggest that DC reactive magnetron sputtering of the titanium target could be an effective tool to control macrophage functional responses toward PCL scaffolds as it allows to inhibit respiratory burst while retaining cell viability and scavenging activity.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Macrófagos , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...