Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826393

RESUMO

Timothy syndrome (OMIM #601005) is a rare disease caused by variants in the gene CACNA1C . Timothy syndrome patients were first identified as having a cardiac presentation of Long QT and syndactyly of the fingers and/or toes, and an identical variant in CACNA1C , Gly406Arg. However, since this original identification, more individuals harboring diverse variants in CACNA1C have been identified and have presented with various cardiac and extra-cardiac symptoms. Furthermore, it has remained underexplored whether individuals harboring canonical Gly406Arg variants in mutually exclusive exon 8A (Timothy syndrome 1) or exon 8 (Timothy syndrome 2) have additional symptoms. Here, we describe the first Natural History Study for Timothy syndrome, providing a thorough resource describing the current understanding of disease manifestation in Timothy syndrome patients. Parents of Timothy syndrome children were queried regarding a wide-ranging set of symptoms and features via a survey. Importantly, we find that in addition to cardiac concerns, Timothy syndrome patients commonly share extra-cardiac features including neurodevelopmental impairments, hypoglycemia, and respiratory problems. Our work expands the current understanding of the disorder to better inform the care of Timothy syndrome patients.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-36748043

RESUMO

COPA Syndrome is a rare, autosomal dominant autoimmune/autoinflammatory disease caused by mutations in COPA , which codes for the alpha subunit of the Coat Protein Complex I (COPI). COPI coated vesicles move proteins in retrograde from the Golgi Apparatus to the Endoplasmic Reticulum. At the cellular level, COPA mutations cause ER stress, though the downstream genetic mechanisms of COPA Syndrome remain undefined. Here, we model COPA Syndrome in Caenorhabditis elegans , using CRISPR/Cas9 to generate patient alleles in copa-1 , the C. elegans COPA ortholog. The two alleles made thus far are superficially wild type under normal growth conditions. However, these animals demonstrate an increased ER stress sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...