Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873953

RESUMO

Allotetraploid white clover (Trifolium repens) formed during the last glaciation through hybridisation of two European diploid progenitors from restricted niches: one coastal, the other alpine. Here, we examine which hybridisation-derived molecular events may have underpinned white clover's postglacial niche expansion. We compared the transcriptomic frost responses of white clovers (an inbred line and an alpine-adapted ecotype), extant descendants of its progenitor species and a resynthesised white clover neopolyploid to identify genes that were exclusively frost-induced in the alpine progenitor and its derived subgenomes. From these analyses we identified galactinol synthase, the rate-limiting enzyme in biosynthesis of the cryoprotectant raffinose, and found that the extant descendants of the alpine progenitor as well as the neopolyploid white clover rapidly accumulated significantly more galactinol and raffinose than the coastal progenitor under cold stress. The frost-induced galactinol synthase expression and rapid raffinose accumulation derived from the alpine progenitor likely provided an advantage during early postglacial colonisation for white clover compared to its coastal progenitor.

2.
Front Plant Sci ; 13: 1095359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699852

RESUMO

Increasing water-soluble carbohydrate (WSC) content in white clover is important for improving nutritional quality and reducing environmental impacts from pastoral agriculture. Elucidation of genes responsible for foliar WSC variation would enhance genetic improvement by enabling molecular breeding approaches. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) associated with variation in foliar WSC in white clover. A set of 935 white clover individuals, randomly sampled from five breeding pools selectively bred for divergent (low or high) WSC content, were assessed with 14,743 genotyping-by-sequencing SNPs, using three outlier detection methods: PCAdapt, BayeScan and KGD-FST. These analyses identified 33 SNPs as discriminating between high and low WSC populations and putatively under selection. One SNP was located in the intron of ERD6-like 4, a gene coding for a sugar transporter located on the vacuole membrane. A genome-wide association study using a subset of 605 white clover individuals and 5,757 SNPs, identified a further 12 SNPs, one of which was associated with a starch biosynthesis gene, glucose-1-phosphate adenylyltransferase, glgC. Our results provide insight into genomic regions underlying WSC accumulation in white clover, identify candidate genomic regions for further functional validation studies, and reveal valuable information for marker-assisted or genomic selection in white clover.

3.
Plant Methods ; 14: 75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181764

RESUMO

BACKGROUND: The recent development of next-generation sequencing DNA marker technologies, such as genotyping-by-sequencing (GBS), generates thousands of informative single nucleotide polymorphism markers in almost any species, regardless of genomic resources. This enables poorly resourced or "orphan" crops/species access to high-density, high-throughput marker platforms which have revolutionised population genetics studies and plant breeding. DNA quality underpins success of GBS methods as the DNA must be amenable to restriction enzyme digestion and sequencing. A barrier to implementing GBS technologies is access to inexpensive, high-throughput extraction methods that yield sequencing-quality genomic DNA (gDNA) from plants. Several high-throughput DNA extraction methods are available, but typically provide low yield or poor quality gDNA, or are costly (US$6-$9/sample) for consumables. RESULTS: We modified a non-organic solvent protocol to extract microgram quantities (1-13 µg) of sequencing-quality high molecular weight gDNA inexpensively in 96-well plates from either fresh, freeze-dried or silica gel-dried plant tissue. The protocol was effective for several easy and difficult-to-extract forage, crop, horticultural and common model species including Trifolium, Medicago, Lolium, Secale, Festuca, Malus, Oryza, and Arabidopsis. The extracted DNA was of high molecular weight and digested readily with restriction enzymes. Contrasting with other extraction protocols we assessed, Illumina-based sequencing of GBS libraries developed from this gDNA had very uniform high quality base-calls to the end of sequence reads. Furthermore, DNA extracted using this method has been sequenced successfully with the PacBio long-read platform. The protocol is scalable, readily automated without requirement for fume hoods, requires approximately three hours to process 192 samples (384-576 samples/day), and is inexpensive at US$0.62/sample for consumables. CONCLUSIONS: This versatile, scalable and simple protocol yields high molecular weight genomic DNA suitable for restriction enzyme digestion and next-generation sequencing applications including GBS and long-read sequencing platforms such as PacBio. The low cost, high-throughput, and extraction of high quality gDNA from a range of fresh and dried source plant material makes this method suitable for many sequencing and genotyping applications including large-scale sample screening underpinning breeding programmes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...