Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Am J Bot ; 110(11): e16249, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37792319

RESUMO

PREMISE: Bryophytes form a major component of terrestrial plant biomass, structuring ecological communities in all biomes. Our understanding of the evolutionary history of hornworts, liverworts, and mosses has been significantly reshaped by inferences from molecular data, which have highlighted extensive homoplasy in various traits and repeated bursts of diversification. However, the timing of key events in the phylogeny, patterns, and processes of diversification across bryophytes remain unclear. METHODS: Using the GoFlag probe set, we sequenced 405 exons representing 228 nuclear genes for 531 species from 52 of the 54 orders of bryophytes. We inferred the species phylogeny from gene tree analyses using concatenated and coalescence approaches, assessed gene conflict, and estimated the timing of divergences based on 29 fossil calibrations. RESULTS: The phylogeny resolves many relationships across the bryophytes, enabling us to resurrect five liverwort orders and recognize three more and propose 10 new orders of mosses. Most orders originated in the Jurassic and diversified in the Cretaceous or later. The phylogenomic data also highlight topological conflict in parts of the tree, suggesting complex processes of diversification that cannot be adequately captured in a single gene-tree topology. CONCLUSIONS: We sampled hundreds of loci across a broad phylogenetic spectrum spanning at least 450 Ma of evolution; these data resolved many of the critical nodes of the diversification of bryophytes. The data also highlight the need to explore the mechanisms underlying the phylogenetic ambiguity at specific nodes. The phylogenomic data provide an expandable framework toward reconstructing a comprehensive phylogeny of this important group of plants.


Assuntos
Briófitas , Hepatófitas , Filogenia , Briófitas/genética , Plantas/genética , Hepatófitas/genética
2.
Dev Dyn ; 252(2): 294-304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36065982

RESUMO

BACKGROUND: The thyroid hormones-thyroxine (T4) and 3,5,3'triiodothyronine (T3)-regulate the development of the central nervous system (CNS) in vertebrates by acting in different cell types. Although several T3 target genes have been identified in the brain, the changes in the transcriptome in response to T3 specifically in neural stem and progenitor cells (NSPCs) during the early steps of NSPCs activation and neurogenesis have not been studied in vivo. Here, we characterized the transcriptome of FACS-sorted NSPCs in response to T3 during Xenopus laevis metamorphosis. RESULTS: We identified 1252 upregulated and 726 downregulated genes after 16 hours of T3 exposure. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that T3-upregulated genes were significantly enriched in rRNA processing and maturation, protein folding, ribosome biogenesis, translation, mitochondrial function, and proteasome. These results suggest that NSPCs activation induced by T3 is characterized by an early proteome remodeling through the synthesis of the translation machinery and the degradation of proteins by the proteasome. CONCLUSION: This work provides new insights into the dynamics of activation of NPSCs in vivo in response to T3 during a critical period of neurogenesis in the metamorphosis.


Assuntos
Células-Tronco Neurais , Complexo de Endopeptidases do Proteassoma , Animais , Xenopus laevis , Complexo de Endopeptidases do Proteassoma/genética , Hormônios Tireóideos/metabolismo , Células-Tronco Neurais/metabolismo , Perfilação da Expressão Gênica , Metamorfose Biológica/genética , Regulação da Expressão Gênica no Desenvolvimento
3.
Front Cell Dev Biol ; 10: 833175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568977

RESUMO

Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.

4.
Cell Mol Life Sci ; 79(5): 239, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416520

RESUMO

Many people around the world suffer from some form of paralysis caused by spinal cord injury (SCI), which has an impact on quality and life expectancy. The spinal cord is part of the central nervous system (CNS), which in mammals is unable to regenerate, and to date, there is a lack of full functional recovery therapies for SCI. These injuries start with a rapid and mechanical insult, followed by a secondary phase leading progressively to greater damage. This secondary phase can be potentially modifiable through targeted therapies. The growing literature, derived from mammalian and regenerative model studies, supports a leading role for mitochondria in every cellular response after SCI: mitochondrial dysfunction is the common event of different triggers leading to cell death, cellular metabolism regulates the immune response, mitochondrial number and localization correlate with axon regenerative capacity, while mitochondrial abundance and substrate utilization regulate neural stem progenitor cells self-renewal and differentiation. Herein, we present a comprehensive review of the cellular responses during the secondary phase of SCI, the mitochondrial contribution to each of them, as well as evidence of mitochondrial involvement in spinal cord regeneration, suggesting that a more in-depth study of mitochondrial function and regulation is needed to identify potential targets for SCI therapeutic intervention.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Sistema Nervoso Central/metabolismo , Humanos , Mamíferos , Mitocôndrias/metabolismo , Regeneração Nervosa , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Regeneração da Medula Espinal/fisiologia
5.
Gene Expr Patterns ; 43: 119234, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151892

RESUMO

BACKGROUND: In a high-throughput RNA sequencing analysis, comparing the transcriptional response between Xenopus laevis regenerative and non-regenerative stages to spinal cord injury, cornifelin was found among the most highly differentially expressed genes. Cornifelin is mainly expressed in stratified squamous epithelia, but its expression in the spinal cord and other central nervous structures has only been described during early development. RESULTS: Here, we report cornifelin expression in the spinal cord, retina, and cornea throughout metamorphosis and in the spinal cord after injury. Cornifelin was detected in the grey matter and meninges of the spinal cord from NF-50 to NF-66, with decreased expression in the grey matter during metamorphosis. In the retina, cornifelin was expressed in the ganglion cell layer, the inner and outer nuclear layer, and the outer segment from NF-50 to NF-66. After spinal cord injury, we only observed cornifelin upregulation in NF-66 but no significant changes in NF-50. However, we found cornifelin positive cells in NF-50 meninges closing the spinal cord stumps 1 day after injury and delineating the borders of the spinal cord following the continuity of tissue regeneration in the following days after injury. Instead, in NF-66, cornifelin positive cells were distributed to the ventral side of the spinal cord at 6 days after injury, and at the injury gap at 10 days after injury. CONCLUSIONS: Cornifelin is expressed in the Xenopus laevis spinal cord and eye during metamorphosis and plays a role in the meningeal response to spinal cord injury.


Assuntos
Traumatismos da Medula Espinal , Animais , Metamorfose Biológica/genética , Medula Espinal , Traumatismos da Medula Espinal/genética , Xenopus laevis/genética
6.
J Vis Exp ; (178)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34958088

RESUMO

Spinal cord injury (SCI) is a permanent affliction, which affects the central nervous system (CNS) motor and sensory nerves, resulting in paralysis beneath the injury site. To date, there is no functional recovery therapy for SCI, and there is a lack of clarity regarding the many complexes and dynamic events occurring after SCI. Many non-mammalian organisms can regenerate after severe SCI, such as teleost fishes, urodele amphibians, and larval stages of anuran amphibians, including Xenopus laevis tadpoles. These are bona fide model organisms to study and understand the response to SCI and the mechanisms underlying successful regenerative processes. This type of research can lead to the identification of potential targets for SCI therapeutic intervention. This article describes how to perform Xenopus laevis tadpole spinal cord transection, including husbandry, surgery, postsurgery care, and functional test evaluation. This injury method can be applied for elucidating the different steps of spinal cord regeneration by studying the cellular, molecular, and genetic mechanisms, as well as histological and functional evolution after SCI and during spinal cord regeneration.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Sistema Nervoso Central/patologia , Larva/fisiologia , Medula Espinal/patologia , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/patologia , Regeneração da Medula Espinal/genética , Xenopus laevis/fisiologia
7.
NPJ Regen Med ; 6(1): 68, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686684

RESUMO

Xenopus laevis are able to regenerate the spinal cord during larvae stages through the activation of neural stem progenitor cells (NSPCs). Here we use high-resolution expression profiling to characterize the early transcriptome changes induced after spinal cord injury, aiming to identify the signals that trigger NSPC proliferation. The analysis delineates a pathway that starts with a rapid and transitory activation of immediate early genes, followed by migration processes and immune response genes, the pervasive increase of NSPC-specific ribosome biogenesis factors, and genes involved in stem cell proliferation. Western blot and immunofluorescence analysis showed that mTORC1 is rapidly and transiently activated after SCI, and its pharmacological inhibition impairs spinal cord regeneration and proliferation of NSPC through the downregulation of genes involved in the G1/S transition of cell cycle, with a strong effect on PCNA. We propose that the mTOR signaling pathway is a key player in the activation of NPSCs during the early steps of spinal cord regeneration.

8.
Cold Spring Harb Protoc ; 2021(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33782095

RESUMO

Xenopus has been widely used as a model organism to study wound healing and regeneration. During early development and at tadpole stages, Xenopus is a quick healer and is able to regenerate multiple complex organs-abilities that decrease with the progression of metamorphosis. This unique capacity leads us to question which mechanisms allow and direct regeneration at stages before the beginning of metamorphosis and which ones are responsible for the loss of regenerative capacities during later stages. Xenopus is an ideal model to study regeneration and has contributed to the understanding of morphological, cellular, and molecular mechanisms involved in these processes. Nevertheless, there is still much to learn. Here we provide an overview on using Xenopus as a model organism to study regeneration and introduce protocols that can be used for studying wound healing and regeneration at multiple levels, thus enhancing our understanding of these phenomena.


Assuntos
Regeneração , Cicatrização , Animais , Larva , Metamorfose Biológica , Xenopus laevis
9.
iScience ; 24(2): 102074, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33644710

RESUMO

The transcriptome analysis of injured Xenopus laevis tadpole and mice suggested that Neurod4L.S., a basic-helix-loop-helix transcription factor, was the most promising transcription factor to exert neuroregeneration after spinal cord injury (SCI) in mammals. We generated a pseudotyped retroviral vector with the neurotropic lymphocytic choriomeningitis virus (LCMV) envelope to deliver murine Neurod4 to mice undergoing SCI. SCI induced ependymal cells to neural stem cells (NSCs) in the central canal. The LCMV envelope-based pseudotypedvector preferentially introduced Neurod4 into activated NSCs, which converted to neurons with axonal regrowth and suppressed the scar-forming glial lineage. Neurod4-induced inhibitory neurons predominantly projected to the subsynaptic domains of motor neurons at the epicenter, and Neurod4-induced excitatory neurons predominantly projected to subsynaptic domains of motor neurons caudal to the injury site suggesting the formation of functional synapses. Thus, Neurod4 is a potential therapeutic factor that can improve anatomical and functional recovery after SCI.

10.
Appl Plant Sci ; 9(1): e11406, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33552748

RESUMO

PREMISE: New sequencing technologies facilitate the generation of large-scale molecular data sets for constructing the plant tree of life. We describe a new probe set for target enrichment sequencing to generate nuclear sequence data to build phylogenetic trees with any flagellate land plants, including hornworts, liverworts, mosses, lycophytes, ferns, and all gymnosperms. METHODS: We leveraged existing transcriptome and genome sequence data to design the GoFlag 451 probes, a set of 56,989 probes for target enrichment sequencing of 451 exons that are found in 248 single-copy or low-copy nuclear genes across flagellate plant lineages. RESULTS: Our results indicate that target enrichment using the GoFlag451 probe set can provide large nuclear data sets that can be used to resolve relationships among both distantly and closely related taxa across the flagellate land plants. We also describe the GoFlag 408 probes, an optimized probe set covering 408 of the 451 exons from the GoFlag 451 probe set that is commercialized by RAPiD Genomics. CONCLUSIONS: A target enrichment approach using the new probe set provides a relatively low-cost solution to obtain large-scale nuclear sequence data for inferring phylogenetic relationships across flagellate land plants.

11.
Neural Dev ; 16(1): 2, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526076

RESUMO

BACKGROUND: The efficient regenerative abilities at larvae stages followed by a non-regenerative response after metamorphosis in froglets makes Xenopus an ideal model organism to understand the cellular responses leading to spinal cord regeneration. METHODS: We compared the cellular response to spinal cord injury between the regenerative and non-regenerative stages of Xenopus laevis. For this analysis, we used electron microscopy, immunofluorescence and histological staining of the extracellular matrix. We generated two transgenic lines: i) the reporter line with the zebrafish GFAP regulatory regions driving the expression of EGFP, and ii) a cell specific inducible ablation line with the same GFAP regulatory regions. In addition, we used FACS to isolate EGFP+ cells for RNAseq analysis. RESULTS: In regenerative stage animals, spinal cord regeneration triggers a rapid sealing of the injured stumps, followed by proliferation of cells lining the central canal, and formation of rosette-like structures in the ablation gap. In addition, the central canal is filled by cells with similar morphology to the cells lining the central canal, neurons, axons, and even synaptic structures. Regeneration is almost completed after 20 days post injury. In non-regenerative stage animals, mostly damaged tissue was observed, without clear closure of the stumps. The ablation gap was filled with fibroblast-like cells, and deposition of extracellular matrix components. No reconstruction of the spinal cord was observed even after 40 days post injury. Cellular markers analysis confirmed these histological differences, a transient increase of vimentin, fibronectin and collagen was detected in regenerative stages, contrary to a sustained accumulation of most of these markers, including chondroitin sulfate proteoglycans in the NR-stage. The zebrafish GFAP transgenic line was validated, and we have demonstrated that is a very reliable and new tool to study the role of neural stem progenitor cells (NSPCs). RNASeq of GFAP::EGFP cells has allowed us to clearly demonstrate that indeed these cells are NSPCs. On the contrary, the GFAP::EGFP transgene is mainly expressed in astrocytes in non-regenerative stages. During regenerative stages, spinal cord injury activates proliferation of NSPCs, and we found that are mainly differentiated into neurons and glial cells. Specific ablation of these cells abolished proper regeneration, confirming that NSPCs cells are necessary for functional regeneration of the spinal cord. CONCLUSIONS: The cellular response to spinal cord injury in regenerative and non-regenerative stages is profoundly different between both stages. A key hallmark of the regenerative response is the activation of NSPCs, which massively proliferate, and are differentiated into neurons to reconstruct the spinal cord. Also very notably, no glial scar formation is observed in regenerative stages, but a transient, glial scar-like structure is formed in non-regenerative stage animals.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Medula Espinal , Xenopus laevis , Peixe-Zebra
12.
Front Plant Sci ; 11: 536862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013962

RESUMO

The Chilean endemic genus Costesia belongs to the Gigaspermaceae, one of the most basal groups of arthrodontous mosses. While none of the species in this family has a peristome, earlier stages of sporophyte development often disclose its basic structure. The study of Costesia sporophytes at the early stages of development was conducted to identify possible similarities with Diphyscium, the genus sister to Gigaspermaceae plus all other arthrodontous mosses in the moss phylogenetic tree. Diphyscium shares a strongly unequal cell division pattern with the Dicranidae. In groups more closely related to Diphyscium, as it is the case of Costesia, this pattern is not known. Our study of Costesia found only irregular presence of slightly unequal cell divisions that may then be considered as a plesiomorphic state in peristomate mosses. The most frequently present pattern revealed in Costesia is common with the Polytrichaceae, a more basal moss group with nematodontous peristomes.

13.
Biol Open ; 8(12)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31852668

RESUMO

Xenopus laevis frogs are a widely used organism to study aspects of modern biology ( Harland and Grainger, 2011). Its central nervous system is particularly interesting, because in certain stages of metamorphosis the spinal cord can regenerate after injury and recover swimming. With this in mind, automatic gait analysis could help evaluate the regenerative performance by means of a method that automatically and quantitatively establishes the degree in froglets' limb movement. Here, we present an algorithm that characterizes spinal cord damage in froglets. The proposed method tracks the position of the limbs throughout videos and extracts kinematic features, which posteriorly serve to differentiate froglets with different levels of damage to the spinal cord. The detection algorithm and kinematic features chosen were validated in a pattern recognition experiment in which 90 videos (divided equally in three classes: uninjured, hemisected and transected) were classified. We conclude that our system is effective in the characterization of damage to the spinal cord through video analysis of a swimming froglet with a 97% accuracy. These results potentially validate this methodology to automatically compare the recovery of spinal cord function after different treatments without the need to manually process videos. In addition, the procedure could be used to measure the kinematics and behavioral response of froglets to different experimental conditions such as nutritional state, stress, genetic background and age.

14.
Dev Dyn ; 248(10): 969-978, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31397023

RESUMO

BACKGROUND: Lin28 regulates stem cell biology and developmental timing. At the molecular level Lin28 inhibits the biogenesis of the micro RNA let-7 and directly controls the transcription and translation of several genes. In Xenopus, Lin28 overexpression delays metamorphosis and affects the expression of genes of the thyroid hormone (TH) axis. The TH carrier albumin, synthesized by the liver, is down-regulated in limbs and tail after Lin28 overexpression. The molecular mechanisms underlying the interaction between Lin28, let-7, and the hypothalamus-pituitary-thyroid gland (HPT) axis are unknown. RESULTS: We found that precursor and mature forms of let-7 increase during Xenopus metamorphosis. In the liver, lin28b is down-regulated and albumin is up-regulated during metamorphosis. Overexpression of a truncated form of Lin28a (Lin28aΔC), which has been shown not to interact with RNA helicase A to regulate translation, delays metamorphosis, indicating that the translational regulation domain is not required to inhibit the HPT axis. Importantly, both full length Lin28a and Lin28aΔC block the increase of albumin mRNA in the liver independently of changes in TH signaling. CONCLUSIONS: These results suggest that Lin28 delays metamorphosis through regulation of let-7 and that the decrease of the TH carrier albumin is one of the early changes after Lin28 overexpression.


Assuntos
Albuminas/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , MicroRNAs/antagonistas & inibidores , Biossíntese de Proteínas , Domínios Proteicos , Proteínas de Ligação a RNA/farmacologia , Hormônios Tireóideos/metabolismo , Proteínas de Xenopus/farmacologia , Xenopus laevis
15.
Biomed Phys Eng Express ; 6(1): 012002, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33438588

RESUMO

Spinal cord injury (SCI) is a tremendously devastating disorder with no effective therapy. Neuroprotective strategies have been applied aiming to prevent secondary cell death but no successful and robust effects have been observed. Recently, combinatorial approaches using biomaterials with cells and/or growth factors have demonstrated promising therapeutic effects because of the improvement of axonal growth and in vivo functional recovery in model organisms. In situ injectable hydrogels are a particularly attractive neuroregenerative approach to improve spinal cord repair and regeneration since they can be precisely injected into the lesion site filling the space prior to gelification, decrease scarring and promote axon growth due to the hydrogel's soft structure. Important advances regarding the use of hydrogels as potential therapeutic approaches has been reported during the last 10 years. Injectable alginate hydrogel loaded with GDNF, thermoresponsives heparin-poloxamer loaded with NGF and imidazole-poly(organophosphazenes) hydrogels are just three examples of biomaterials that can promote neurite, axon growth and improve functional recovery in hemisected and resected rats. Here we will review the status of in situ injectable hydrogels for spinal cord regeneration with special focus in the advantages of using hydrogel scaffolds, the ideal polymers to be used, the gelification process and the cells or growth factors combined. The in vitro and in vivo results reported for those biomaterials will be presented, compared and discussed.


Assuntos
Hidrogéis/administração & dosagem , Hidrogéis/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Regeneração da Medula Espinal/efeitos dos fármacos , Animais , Humanos , Medicina Regenerativa/métodos , Alicerces Teciduais
16.
Mech Dev ; 154: 107-115, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29908237

RESUMO

Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Metamorfose Biológica/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Pupa/genética , Pupa/crescimento & desenvolvimento , Receptores de Esteroides/genética , Alinhamento de Sequência
17.
Mech Dev ; 154: 91-97, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29807117

RESUMO

The frog neuromuscular junction (NMJ) has been extensively used as a model system to dissect the mechanisms involved in synapse formation, maturation, maintenance, regeneration, and function. Early NMJ synaptogenesis relies on a combination of cell-autonomous and interdependent pre/postsynaptic communication processes. Due to their transparency, comparatively easy manipulation, and remarkable regenerative abilities, frog tadpoles constitute an excellent model to study NMJ formation and regeneration. Here, we aimed to contribute new aspects on the characterization of the ontogeny of NMJ formation in Xenopus embryos and to explore the morphological changes occurring at the NMJ after spinal cord injury. Following analyses of X. tropicalis tadpoles during development we found that the early pathfinding of rostral motor axons is likely helped by previously formed postsynaptic specializations, whereas NMJ formation in recently differentiated ventral muscles in caudal segments seems to rely on presynaptic inputs. After spinal cord injury of X. laevis tadpoles our results suggest that rostral motor axon projections help caudal NMJ re-innervation before spinal cord connectivity is repaired.


Assuntos
Larva/fisiologia , Neurogênese/fisiologia , Junção Neuromuscular/fisiologia , Regeneração/fisiologia , Sinapses/metabolismo , Xenopus laevis/fisiologia , Animais , Axônios/metabolismo , Axônios/fisiologia , Diferenciação Celular/fisiologia , Larva/metabolismo , Junção Neuromuscular/metabolismo , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Xenopus laevis/metabolismo
18.
Cold Spring Harb Protoc ; 2018(12)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-29769390

RESUMO

Mammals are not capable of regenerating their central nervous system (CNS); anamniotes, however, can regenerate in response to injury. The mechanisms that explain the different regenerative capabilities include: (i) extrinsic mechanisms that consider the cellular environment and extracellular matrix composition, (ii) intrinsic factors implicating the presence or absence of genetic programs that promote axon regeneration, and (iii) the presence or absence of neural stem and progenitors cells (NSPCs) that allow neurogenesis. Xenopus laevis is able to regenerate its CNS during larval stages (i.e., the regenerative stage [R-stage]). However, concomitant with metamorphosis this capacity decreases and is lost completely in juvenile froglets (i.e., nonregenerative stages [NR-stages]). The loss of the regenerative ability correlates with a reduction in the percentage of Sox2+ cells, which are putative NSPCs. This protocol shows the effect of transplantation of spinal cord cells from R-stage Xenopus larvae into NR-stage froglets. Using this procedure, it is possible to study axon regeneration and stem cell biology in vivo.


Assuntos
Transplante de Células/métodos , Células-Tronco Neurais/fisiologia , Regeneração da Medula Espinal , Animais , Xenopus
19.
Appl Plant Sci ; 6(2): e1023, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29732254

RESUMO

PREMISE OF THE STUDY: Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss. Efforts to fully leverage collections are impeded by a lack of trained taxonomists and a lack of interest and engagement by the public. We provide a model of a crowd-sourced data collection project that produces quality taxonomic data sets and empowers citizen scientists through real contributions to science. Entitled MicroPlants, the project is a collaboration between taxonomists, citizen science experts, and teachers and students from universities and K-12. METHODS: We developed an online tool that allows citizen scientists to measure photographs of specimens of a hyper-diverse group of liverworts from a biodiversity hotspot. RESULTS: Using the MicroPlants online tool, citizen scientists are generating high-quality data, with preliminary analysis indicating non-expert data can be comparable to expert data. DISCUSSION: More than 11,000 users from both the website and kiosk versions have contributed to the data set, which is demonstrably aiding taxonomists working toward establishing conservation priorities within this group. MicroPlants provides opportunities for public participation in authentic science research. The project's educational component helps move youth toward engaging in scientific thinking and has been adopted by several universities into curriculum for both biology and non-biology majors.

20.
J Comp Neurol ; 526(10): 1712-1732, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603210

RESUMO

Studying the cellular composition and morphological changes of cells lining the central canal during Xenopus laevis metamorphosis could contribute to understand postnatal development and spinal cord regeneration. Here we report the analysis of central canal cells at different stages during metamorphosis using immunofluorescence for protein markers expression, transmission and scanning electron microscopy and cell proliferation assays. The central canal was regionalized according to expression of glial markers, ultrastructure, and proliferation in dorsal, lateral, and ventral domains with differences between larvae and froglets. In regenerative larvae, all cell types were uniciliated, have a radial morphology, and elongated nuclei with lax chromatin, resembling radial glial cells. Important differences in cells of nonregenerative froglets were observed, although uniciliated cells were found, the most abundant cells had multicilia and revealed extensive changes in the maturation and differentiation state. The majority of dividing cells in larvae corresponded to uniciliated cells at dorsal and lateral domains in a cervical-lumbar gradient, correlating with undifferentiated features. Neurons contacting the lumen of the central canal were detected in both stages and revealed extensive changes in the maturation and differentiation state. However, in froglets a very low proportion of cells incorporate 5-ethynyl-2'-deoxyuridine (EdU), associated with the differentiated profile and with the increase of multiciliated cells. Our work showed progressive changes in the cell types lining the central canal of Xenopus laevis spinal cord which are correlated with the regenerative capacities.


Assuntos
Metamorfose Biológica , Medula Espinal/citologia , Medula Espinal/fisiologia , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia , Animais , Contagem de Células , Proliferação de Células , Cílios/ultraestrutura , Desoxiuridina/análogos & derivados , Feminino , Larva , Masculino , Regeneração Nervosa , Células-Tronco Neurais , Neuroglia/fisiologia , Neuroglia/ultraestrutura , Medula Espinal/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...